Dynamic control of a robot arm using CMAC neural networks

被引:24
作者
Cembrano, G
Wells, G
Sarda, J
Ruggeri, A
机构
[1] Inst. de Robotica e Info. Indust., Univ. Politecnica Cataluna-C., Planta 2, Barcelona 08034
关键词
neural networks; identification; adaptive control; robotics; CMAC;
D O I
10.1016/S0967-0661(97)00028-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Neural identification and control techniques are well-suited to the problem of controlling robot dynamics. This paper describes the use of CMAC networks for the adaptive dynamic control of an orange-harvesting robot. Among the various neural-network paradigms available, the CMAC model was chosen in this case because of its fast convergence and on-line adaptation capability The solution of this dynamic control problem with CMAC is an encouraging demonstration of ''experience-based'', as opposed to model-based, control techniques and is a, good example of the use of on-line learning in adaptive neural control. Copyright (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:485 / 492
页数:8
相关论文
共 13 条
[1]  
Albus J. S., 1975, Transactions of the ASME. Series G, Journal of Dynamic Systems, Measurement and Control, V97, P220, DOI 10.1115/1.3426922
[2]  
ANANTHRAMAN S, 1993, ENG APPL ART INT
[3]  
[Anonymous], IEEE T NEURAL NETWOR
[4]  
CEMBRANO G, 1995, 4 ROB CONTR BAS NEUR
[5]  
CEMBRANO G, 1992, APPL ARTIF INTELL, P388, DOI [10.1016/B978-0-08-042016-5.50026-7, DOI 10.1016/B978-0-08-042016-5.50026-7]
[6]  
HOSKINS DA, 1992, IEEE T NEURAL NETWOR
[7]  
HUNT KJ, 1993, AUTOMATICA, V28
[8]  
LOKC RE, 1994, INTELLIGENT COMPONEN, V2, P182
[9]   APPLICATION OF A GENERAL LEARNING ALGORITHM TO THE CONTROL OF ROBOTIC MANIPULATORS [J].
MILLER, WT ;
GLANZ, FH ;
KRAFT, LG .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1987, 6 (02) :84-98
[10]  
MILLER WT, 1994, IEEE CONTROL SYSTEMS, V1, P41