Chaos synchronization for a class of discrete dynamical systems on the N-dimensional torus

被引:3
作者
Rosier, L
Millérioux, G
Bloch, G
机构
[1] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Nancy 1, CRAN, ESSTIN, F-54519 Vandoeuvre Les Nancy, France
关键词
chaotic dynamical system; switched systems; N-torus; ergodicity; chaos synchronization; cryptography;
D O I
10.1016/j.sysconle.2005.07.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a class of dynamical systems on T-N (the N-dimensional torus) is investigated. It is proved that any dynamical system in this class is chaotic in the sense of Devaney, and that the sequences produced are equidistributed for almost every initial data. The above results are then extended to switched affine transformations of T-N. Next, a chaos-synchronization mechanism is introduced and used for masking information in a communication setup. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:223 / 231
页数:9
相关论文
共 31 条
[1]   Lie-algebraic stability criteria or switched systems [J].
Agrachev, AA ;
Liberzon, D .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (01) :253-269
[2]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[3]  
BLEKHMAN II, 2002, SPECIAL ISSUE CHAOS, V58
[4]  
BLONDEL VD, 1999, OPEN PROBLEMS MATH S
[5]  
Devaney R., 2003, STUDIES NONLINEARITY
[6]  
Hasler M., 1996, P IEEE WORKSH NONL D, P161
[7]  
Katok A., 1997, Introduction to the Modern Theory of Dynamical Systems
[8]   The role of synchronization in digital communications using chaos .1. Fundamentals of digital communications [J].
Kolumban, G ;
Kennedy, MP ;
Chua, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (10) :927-936
[9]  
Kuipers L., 1974, Pure and Applied Mathematics
[10]   ON GLOBAL IDENTIFIABILITY FOR ARBITRARY MODEL PARAMETRIZATIONS [J].
LJUNG, L ;
GLAD, T .
AUTOMATICA, 1994, 30 (02) :265-276