Novel Microfluidic Structures for Wireless Passive Temperature Telemetry Medical Systems Using Radar Interrogation Techniques in Ka-Band

被引:34
作者
Bouaziz, Sofiene [1 ,2 ,3 ]
Chebila, Franck [1 ,2 ,3 ]
Traille, Anya [1 ,2 ,3 ]
Pons, Patrick [1 ,2 ,3 ]
Aubert, Herve [1 ,2 ,3 ]
Tentzeris, Manos M. [4 ]
机构
[1] CNRS, LAAS, F-31077 Toulouse, France
[2] Univ Toulouse, F-31077 Toulouse, France
[3] UPS, INSA, INP, ISAE, F-31077 Toulouse, France
[4] Georgia Inst Technol, Sch ECE, Atlanta, GA 30332 USA
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2012年 / 11卷
关键词
Electromagnetic transduction; frequency-modulated continuous-wave (FMCW) radar; medical telemetry; microfluidic; passive and chipless sensor; remote sensing; temperature microsensor; wireless sensor;
D O I
10.1109/LAWP.2013.2242272
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a new miniaturized (below 1 mm(3)) temperature sensor based on microfluidic technology and radar passive interrogation principles, which can be easily applied for temperature telemetry for medical applications. The chipless microsystem is made up of a planar-gap capacitor with a microchannel located in between its plates. The temperature-dependent expansion/shrinkage of the water inside the microchannel modifies in a monotonic way the liquid level across the capacitor. The resulting change in the effective permittivity modifies the capacitance value in a temperature-dependent way. The first prototypes of the temperature microsensor were micromachined and integrated with an antenna, while the ambient temperature was remotely measured using frequency-modulated continuous-wave (FMCW) radar interrogation principles at 29.75 GHz. Preliminary measurement results demonstrated a 0.4 dBm/degrees C sensitivity over a 9 degrees C temperature range (24 degrees C-33 degrees C).
引用
收藏
页码:1706 / 1709
页数:4
相关论文
共 11 条
[1]   A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films [J].
Abgrall, P ;
Lattes, C ;
Conédéral, V ;
Dollat, X ;
Colin, S ;
Gué, AM .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (01) :113-121
[2]  
Aubert H., 2012, 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), P398, DOI 10.1109/RFID-TA.2012.6404554
[3]   Automation of reading liquid-in-glass thermometers [J].
Batagelj, V ;
Bojkovski, J ;
Drnovek, J ;
Pusnik, I .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2001, 50 (06) :1594-1598
[4]   Feasibility of Wireless Gas Detection with an FMCW RADAR Interrogation of Passive RF Gas Sensor [J].
Hallil, Hamida ;
Chebila, Franck ;
Menini, Philippe ;
Pons, Patrick ;
Aubert, Herve .
2010 IEEE SENSORS, 2010, :759-762
[5]   Phenomenological Theory and Experimental Characterizations of Passive Wireless EM Pressure Micro-Sensor Prototype [J].
Jatlaoui, Mohamed Mehdi ;
Chebila, Franck ;
Idda, Tonio ;
Pons, Patrick ;
Aubert, Herve .
2010 IEEE SENSORS, 2010, :643-646
[6]  
Jatlaoui MM, 2010, EUR MICROW CONF, P1106
[7]   A method for filling complex polymeric microfluidic devices and arrays [J].
Monahan, J ;
Gewirth, AA ;
Nuzzo, RG .
ANALYTICAL CHEMISTRY, 2001, 73 (13) :3193-3197
[8]   A review of wireless SAW sensors [J].
Pohl, A .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2000, 47 (02) :317-332
[9]  
Ruhanen A., 2008, Sensor-enabled RFID Tag Handbook
[10]  
Swindells J. F., 1968, NBS SPECIAL PUBLICAT, V300