Prospects for improving savanna biophysical models by using multiple-constraints model-data assimilation methods

被引:24
作者
Barrett, DJ
Hill, MJ
Hutley, LB
Beringer, J
Xu, JH
Cook, GD
Carter, JO
Williams, RJ
机构
[1] CSIRO Land & Water, Canberra, ACT 2601, Australia
[2] Cooperat Res Ctr Greenhouse Accounting, Canberra, ACT 2601, Australia
[3] Bur Rural Sci, Canberra, ACT 2601, Australia
[4] Charles Darwin Univ, Fac Educ Hlth & Sci, Darwin, NT 0909, Australia
[5] Charles Darwin Univ, Cooperat Res Ctr Trop Savanna Management, Darwin, NT 0909, Australia
[6] Monash Univ, Sch Geog & Environm Sci, Clayton, Vic 3800, Australia
[7] Queensland Dept Nat Resource Management Mines & E, Brisbane, Qld 4001, Australia
[8] CSIRO Sustainable Ecosyst, Winnellie, NT 0822, Australia
关键词
D O I
10.1071/BT04139
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A 'multiple-constraints' model-data assimilation scheme using a diverse range of data types offers the prospect of improved predictions of carbon and water budgets at regional scales. Global savannas, occupying more than 12% of total land area, are an economically and ecologically important biome but are relatively poorly covered by observations. In Australia, savannas are particularly poorly sampled across their extent, despite their amenity to ground-based measurement ( largely intact vegetation, low relief and accessible canopies). In this paper, we describe the theoretical and practical requirements of integrating three types of data ( ground-based observations, measurements of CO2/H2O fluxes and remote-sensing data) into a terrestrial carbon, water and energy budget model by using simulated observations for a hypothetical site of given climatic and vegetation conditions. The simulated data mimic specific errors, biases and uncertainties inherent in real data. Retrieval of model parameters and initial conditions by the assimilation scheme, using only one data type, led to poor representation of modelled plant-canopy production and ecosystem respiration fluxes because of errors and bias inherent in the underlying data. By combining two or more types of data, parameter retrieval was improved; however, the full compliment of data types was necessary before all measurement errors and biases in data were minimised. This demonstration illustrates the potential of these techniques to improve the performance of ecosystem biophysical models by examining consistency among datasets and thereby reducing uncertainty in model parameters and predictions. Furthermore, by using existing available data, it is possible to design field campaigns with a specified network design for sampling to maximise uncertainty reduction, given available funding. Application of these techniques will not only help fill knowledge gaps in the carbon and water dynamics of savannas but will result in better information for decision support systems to solve natural-resource management problems in this biome worldwide.
引用
收藏
页码:689 / 714
页数:26
相关论文
共 100 条
[1]  
*AGO NCAS, 2001, NAT CARB ACC FRAM
[2]  
*AGO NGGI, 2000, NAT GREENH GAS INV 1
[3]   A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations [J].
Aires, F ;
Prigent, C ;
Rossow, WB ;
Rothstein, M .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D14) :14887-14907
[4]  
Allen T. F. H., 1982, Hierarchy: perspectives for ecological complexity
[5]   The Southern Tropical Atlantic Region Experiment (STARE): Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE A) and Southern African Fire-Atmosphere Research Initiative (SAFARI): An introduction [J].
Andreae, MO ;
Fishman, J ;
Lindesay, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D19) :23519-23520
[6]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[7]   Methods and examples for remote sensing data assimilation in land surface process modeling [J].
Bach, H ;
Mauser, W .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (07) :1629-1637
[8]  
Baldocchi D, 2001, B AM METEOROL SOC, V82, P2415, DOI 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO
[9]  
2
[10]   Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future [J].
Baldocchi, DD .
GLOBAL CHANGE BIOLOGY, 2003, 9 (04) :479-492