An algorithmic framework for genome-wide modeling and analysis of translation networks

被引:37
作者
Mehra, A [1 ]
Hatzimanikatis, V [1 ]
机构
[1] Northwestern Univ, Robert R McCormick Sch Engn & Appl Sci, Dept Chem & Biol Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
D O I
10.1529/biophysj.105.062521
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The sequencing of genomes of several organisms and advances in high through put technologies for transcriptome and proteome analysis has allowed detailed mechanistic studies of transcription and translation using mathematical frameworks that allow integration of both sequence-specic and kinetic properties of these fundamental cellular processes. To understand how perturbations in mRNA levels affect the synthesis of individual proteins within a large protein synthesis network, we consider here a genome-scale codon-wide model of the translation machinery with explicit description of the processes of initiation, elongation, and termination. The mechanistic codon-wide description of the translation process and the large number of mRNAs competing for resources, such as ribosomes, requires the use of novel efficient algorithmic approaches. We have developed such an efficient algorithmic framework for genome-scale models of protein synthesis. The mathematical and computational framework was applied to the analysis of the sensitivity of a translation network to perturbation in the rate constants and in the mRNA levels in the system. Our studies suggest that the highest specific protein synthesis rate (protein synthesis rate per mRNA molecule) is achieved when translation is elongation-limited. We find that the mRNA species with the highest number of actively translating ribosomes exerts maximum control on the synthesis of every protein, and the response of protein synthesis rates to mRNA expression variation is a function of the strength of initiation of translation at different mRNA species. Such quantitative understanding of the sensitivity of protein synthesis to the variation of mRNA expression can provide insights into cellular robustness mechanisms and guide the design of protein production systems.
引用
收藏
页码:1136 / 1146
页数:11
相关论文
共 36 条
[1]   A comparison of selected mRNA and protein abundances in human liver [J].
Anderson, L ;
Seilhamer, J .
ELECTROPHORESIS, 1997, 18 (3-4) :533-537
[2]   Proteome and proteomics: New technologies, new concepts, and new words [J].
Anderson, NL ;
Anderson, NG .
ELECTROPHORESIS, 1998, 19 (11) :1853-1861
[3]   Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae [J].
Arava, Y ;
Wang, YL ;
Storey, JD ;
Liu, CL ;
Brown, PO ;
Herschlag, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3889-3894
[4]  
BREMER H, 1996, ESCHERICHIA COLI SAL, P1553
[5]   Exploring the new world of the genome with DNA microarrays [J].
Brown, PO ;
Botstein, D .
NATURE GENETICS, 1999, 21 (Suppl 1) :33-37
[6]   A trust region method based on interior point techniques for nonlinear programming [J].
Byrd, RH ;
Gilbert, JC ;
Nocedal, J .
MATHEMATICAL PROGRAMMING, 2000, 89 (01) :149-185
[7]   An algorithm for nonlinear optimization using linear programming and equality constrained subproblems [J].
Byrd, RH ;
Gould, NIM ;
Nocedal, J ;
Waltz, RA .
MATHEMATICAL PROGRAMMING, 2004, 100 (01) :27-48
[8]   An interior point algorithm for large-scale nonlinear programming [J].
Byrd, RH ;
Hribar, ME ;
Nocedal, J .
SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (04) :877-900
[9]   Exploring the regulation of tRNA distribution on the genomic scale [J].
Dittmar, KA ;
Mobley, EM ;
Radek, AJ ;
Pan, T .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 337 (01) :31-47
[10]   METABOLIC CONTROL ANALYSIS - A SURVEY OF ITS THEORETICAL AND EXPERIMENTAL DEVELOPMENT [J].
FELL, DA .
BIOCHEMICAL JOURNAL, 1992, 286 :313-330