Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions

被引:47
作者
Bright, Vivien Bianca [1 ]
Bloss, William James [1 ]
Cai, Xiaoming [1 ]
机构
[1] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England
关键词
Street canyons; Air pollution; Large-Eddy Simulation; NOx; Ozone; LARGE-EDDY SIMULATION; REACTIVE POLLUTANT DISPERSION; INTERMEDIATES CRI MECHANISM; TRAFFIC-RELATED POLLUTANT; MCM V3 PART; TROPOSPHERIC DEGRADATION; AIR-QUALITY; WIND-TUNNEL; FLOW; TRANSPORT;
D O I
10.1016/j.atmosenv.2012.10.056
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Street canyons, formed by rows of buildings in urban environments, are associated with high levels of atmospheric pollutants emitted primarily from vehicles, and substantial human exposure. The street canyon forms a semi-enclosed environment, within which emissions may be entrained in a re-circulatory system; chemical processing of emitted compounds alters the composition of the air vented to the overlying boundary layer, compared with the primary emissions. As the prevailing atmospheric chemistry is highly non-linear, and the canyon mixing and predominant chemical reaction timescales are comparable, the combined impacts of dynamics and chemistry must be considered to quantify these effects. Here we report a model study of the coupled impacts of dynamical and chemical processing upon the atmospheric composition in a street canyon environment, to assess the impacts upon air pollutant levels within the canyon, and to quantify the extent to which within-canyon chemical processing alters the composition of canyon outflow, in comparison to the primary emissions within the canyon. A new model for the simulation of street canyon atmospheric chemical processing has been developed, by integrating an existing Large-Eddy Simulation (LES) dynamical model of canyon atmospheric motion with a detailed chemical reaction mechanism, a Reduced Chemical Scheme (RCS) comprising 51 chemical species and 136 reactions, based upon a subset of the Master Chemical Mechanism (MCM). The combined LES-RCS model is used to investigate the combined effects of mixing and chemical processing upon air quality within an idealised street canyon. The effect of the combination of dynamical (segregation) and chemical effects is determined by comparing the outputs of the full LES-RCS canyon model with those obtained when representing the canyon as a zero-dimensional box model (i.e. assuming mixing is complete and instantaneous). The LES-RCS approach predicts lower (canyon-averaged) levels of NOx, OH and HO2, but higher levels of O-3, compared with the box model run under identical chemical and emissions conditions. When considering the level of chemical detail implemented, segregation effects were found to reduce the error introduced by simplifying the reaction mechanism. Chemical processing of emissions within the canyon leads to a significant increase in the O-x flux from the canyon into the overlying boundary layer, relative to primary emissions, for the idealised case considered here. These results demonstrate that within-canyon atmospheric chemical processing can substantially alter the concentrations of pollutants injected into the urban canopy layer, compared with the raw emission rates within the street canyon. The extent to which these effects occur is likely to be dependent upon the nature of the domain (canyon aspect ratio), prevailing meteorology and emission/pollution scenario considered. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 55 条
[1]  
Air Quality Expert Group (AQEG), 2005, Particulate matter in the United Kingdom
[2]  
[Anonymous], 1987, BOUNDARY LAYER CLIMA
[3]  
[Anonymous], 2011, TRENDS NOX NO2 EMISS
[4]  
AQEG, 2009, OZ UK
[5]   Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach [J].
Aumont, B ;
Szopa, S ;
Madronich, S .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :2497-2517
[6]   Modeling reactive pollutant dispersion in an urban street canyon [J].
Baik, Jong-Jin ;
Kang, Yoon-So ;
Kim, Jae-Jin .
ATMOSPHERIC ENVIRONMENT, 2007, 41 (05) :934-949
[7]   A study of the dispersion and transport of reactive pollutants in and above street canyons - a large eddy simulation [J].
Baker, J ;
Walker, HL ;
Cai, XM .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (39) :6883-6892
[8]  
Berkowicz R, 2002, URBAN AIR QUALITY - RECENT ADVANCES, PROCEEDINGS, P311
[9]   Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation [J].
Bey, I ;
Jacob, DJ ;
Yantosca, RM ;
Logan, JA ;
Field, BD ;
Fiore, AM ;
Li, QB ;
Liu, HGY ;
Mickley, LJ ;
Schultz, MG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) :23073-23095
[10]   Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons [J].
Bloss, C ;
Wagner, V ;
Jenkin, ME ;
Volkamer, R ;
Bloss, WJ ;
Lee, JD ;
Heard, DE ;
Wirtz, K ;
Martin-Reviejo, M ;
Rea, G ;
Wenger, JC ;
Pilling, MJ .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :641-664