RFLP mapping of three new loci for resistance genes to powdery mildew (Erysiphe graminis f sp hordei) in barley

被引:55
作者
Schonfeld, M
Ragni, A
Fischbeck, G
Jahoor, A
机构
[1] TECH UNIV MUNICH,LEHRSTUHL PFLANZENBAU & ZUCHTUNG,D-85350 FREISING,GERMANY
[2] BIO INTEGRATED TECHNOL SRL,I-06050 PANTALLA,ITALY
关键词
Hordeum vulgare ssp spontaneum; Erysiphe graminis f sp hordei; mildew resistance; RFLP mapping; homoeology;
D O I
10.1007/BF00225726
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Three new major, race-specific, resistance genes to powdery mildew (Erysiphe graminis f. sp. hordei) were identified in three barley lines, 'RS42-6*O', 'RS137-28*E', and 'HSY-78*A', derived from crosses with wild barley (Hordeum vulgare sap. spontaneum). The resistance gene origining from wild barley in line 'RS42-6*O', showed a recessive mode of inheritance, whereas the other wild barley genes were (semi)-dominant. RFLP mapping of these three genes was performed in segregating F-2 populations. The recessive gene in line 'RS42-6*O', was localized on barley chromosome 1S (7HS), while the (semi)-dominant genes in lines 'RS137-28*E', and 'HSY-78*A'. were localized on chromosomes 1L (7HL) and 7L (5HL), respectively. Closely linked RFLP clones mapped at distances between 2.6 cM and 5.3 cM. Hitherto, specific loci for powdery mildew resistance in barley had not been located on these chromosomes. Furthermore, tests for linkage to the unlocalized resistance gene Mlp revealed free segregation. Therefore, these genes represent new loci and new designations are suggested: mlt ('RS42-6*O'), Mlf ('RS137-28*E'), and Mlf ('HSY-78*A'). Comparisons with mapped QTLs for mildew resistance were made and are discussed in the context of homoeology among the genomes of barley (H-vulgare), wheat (Triticum aestivum), and rye (Secale cereale). Duplications of RFLP bands detected in the neighbourhood of Mlf and mlt might indicate an evolutionary interrelationship to the Mla locus for mildew resistance.
引用
收藏
页码:48 / 56
页数:9
相关论文
共 62 条
[1]   Development of a chromosomal arm map for wheat based on RFLP markers [J].
Anderson, J. A. ;
Ogihara, Y. ;
Sorrells, M. E. ;
Tanksley, S. D. .
THEORETICAL AND APPLIED GENETICS, 1992, 83 (08) :1035-1043
[2]  
ASLAM M, 1980, PHYTOPATHOL Z, V99, P87
[3]   LOCALIZATION OF QUANTITATIVE TRAIT LOCI (QTL) FOR AGRONOMIC IMPORTANT CHARACTERS BY THE USE OF A RFLP MAP IN BARLEY (HORDEUM-VULGARE L) [J].
BACKES, G ;
GRANER, A ;
FOROUGHIWEHR, B ;
FISCHBECK, G ;
WENZEL, G ;
JAHOOR, A .
THEORETICAL AND APPLIED GENETICS, 1995, 90 (02) :294-302
[4]   RESTRICTION FRAGMENT LENGTH POLYMORPHISMS IN GENETIC-IMPROVEMENT - METHODOLOGIES, MAPPING AND COSTS [J].
BECKMANN, JS ;
SOLLER, M .
THEORETICAL AND APPLIED GENETICS, 1983, 67 (01) :35-43
[5]   RFLP-BASED GENETIC MAPS OF WHEAT HOMOLOGOUS GROUP-7 CHROMOSOMES [J].
CHAO, S ;
SHARP, PJ ;
WORLAND, AJ ;
WARHAM, EJ ;
KOEBNER, RMD ;
GALE, MD .
THEORETICAL AND APPLIED GENETICS, 1989, 78 (04) :495-504
[6]   RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye [J].
Devos, K. M. ;
Atkinson, M. D. ;
Chinoy, C. N. ;
Liu, C. J. ;
Gale, M. D. .
THEORETICAL AND APPLIED GENETICS, 1992, 83 (08) :931-939
[7]   COMPARATIVE RFLP MAPS OF THE HOMOEOLOGOUS GROUP-2 CHROMOSOMES OF WHEAT, RYE AND BARLEY [J].
DEVOS, KM ;
MILLAN, T ;
GALE, MD .
THEORETICAL AND APPLIED GENETICS, 1993, 85 (6-7) :784-792
[8]   MAPPING OF TRANSEC WHEAT-RYE TRANSLOCATION [J].
DRISCOLL, CJ ;
BIELIG, LM .
CANADIAN JOURNAL OF GENETICS AND CYTOLOGY, 1968, 10 (02) :421-+
[9]  
ELLINGBOE AH, 1976, ENCY PLANT PHYSL, V4, P761
[10]   CONTRASTING COMPLEXITY OF 2 RUST RESISTANCE LOCI IN FLAX [J].
ELLIS, JG ;
LAWRENCE, GJ ;
FINNEGAN, EJ ;
ANDERSON, PA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4185-4188