Trigonometric Bezier and Stancu polynomials over intervals and triangles

被引:16
作者
Walz, G
机构
[1] Fak. für Math. und Informatik, Universität Mannheim
关键词
trigonometric Lagrange polynomials; trigonometric Bernstein polynomials; Stancu polynomials; design parameter;
D O I
10.1016/S0167-8396(96)00061-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce a family of trigonometric polynomials. denoted as Stancu polynomials, which contains the trigonometric Lagrange and Bernstein polynomials. This family depends only on one real parameter, denoted as design parameter. Our approach works for curves as well as for surfaces over triangles. The resulting Stancu curves respectively surfaces therefore establish a link between trigonometric interpolatory and Bernstein-Bezier curves respectively surfaces.
引用
收藏
页码:393 / 397
页数:5
相关论文
共 11 条
[1]  
Alfeld P, 1995, MATHEMATICAL METHODS FOR CURVES AND SURFACES, P11
[2]  
Farin G., 1986, Computer-Aided Geometric Design, V3, P83, DOI 10.1016/0167-8396(86)90016-6
[3]   LINK BETWEEN BEZIER AND LAGRANGE CURVE AND SURFACE SCHEMES [J].
FARIN, G ;
BARRY, PJ .
COMPUTER-AIDED DESIGN, 1986, 18 (10) :525-528
[4]   Null spaces of differential operators, polar forms, and splines [J].
Gonsor, D ;
Neamtu, M .
JOURNAL OF APPROXIMATION THEORY, 1996, 86 (01) :81-107
[5]  
Isaacson E., 1966, ANAL NUMERICAL METHO
[6]  
Koch P. E., 1995, Advances in Computational Mathematics, V3, P405, DOI 10.1007/BF03028369
[7]  
PENA JM, 1996, IN PRESS COMPUTER AI
[8]  
Stancu D.D., 1968, Rev. Roum. Math. Pures Appl., V13, P1173
[9]  
WALZ G, 1991, SPLINE FUNKTIONEN KO
[10]  
WALZ G, 1997, BIT, V37, P188