Model selection for small sample regression

被引:89
作者
Chapelle, O
Vapnik, V
Bengio, Y
机构
[1] LIP6, F-75015 Paris, France
[2] AT&T Labs Res, Middletown, NJ 07748 USA
[3] Univ Montreal, Dept IRO, Montreal, PQ H3C 3J7, Canada
关键词
model selection; parametric regression; uniform convergence bounds;
D O I
10.1023/A:1013943418833
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Model selection is an important ingredient of many machine learning algorithms, in particular when the sample size in small, in order to strike the right trade-off between overfitting and underfitting. Previous classical results for linear regression are based on an asymptotic analysis. We present a new penalization method for performing model selection for regression that is appropriate even for small samples. Our penalization is based on an accurate estimator of the ratio of the expected training error and the expected generalization error, in terms of the expected eigenvalues of the input covariance matrix.
引用
收藏
页码:9 / 23
页数:15
相关论文
共 15 条
[1]  
AKAIKE H, 1970, ANN I STAT MATH, V22, P202
[2]  
AKAIKE H, 1973, INT S INFORMATION TH, V2, P267
[3]  
[Anonymous], 1982, ESTIMATION DEPENDENC
[4]   The minimum description length principle in coding and modeling [J].
Barron, A ;
Rissanen, J ;
Yu, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) :2743-2760
[5]  
BARTLETT P, 2000, COLT 00
[6]  
CHERKASSKY V, 1997, P WORLD C NEUR NETW, P957
[7]   THE RISK INFLATION CRITERION FOR MULTIPLE-REGRESSION [J].
FOSTER, DP ;
GEORGE, EI .
ANNALS OF STATISTICS, 1994, 22 (04) :1947-1975
[8]   GENERALIZED CROSS-VALIDATION AS A METHOD FOR CHOOSING A GOOD RIDGE PARAMETER [J].
GOLUB, GH ;
HEATH, M ;
WAHBA, G .
TECHNOMETRICS, 1979, 21 (02) :215-223
[9]  
Horn R. A., 1986, Matrix analysis
[10]   SOME COMMENTS ON CP [J].
MALLOWS, CL .
TECHNOMETRICS, 1973, 15 (04) :661-675