Quantification of known components of the Escherichia coli TonB energy transduction system:: TonB, ExbB, ExbD and FepA

被引:123
作者
Higgs, PI [1 ]
Larsen, RA [1 ]
Postle, K [1 ]
机构
[1] Washington State Univ, Sch Mol Biosci, Pullman, WA 99164 USA
关键词
D O I
10.1046/j.1365-2958.2002.02880.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The TonB-dependent energy transduction system couples cytoplasmic membrane proton motive force to active transport of iron-siderophore complexes across the outer membrane in Gram-negative bacteria. In Escherichia coli , the primary players known in this process to date are: FepA, the TonB-gated transporter for the siderophore enterochelin; TonB, the energy-transducing protein; and two cytoplasmic membrane proteins with less defined roles, ExbB and ExbD. In this study, we report the per cell numbers of TonB, ExbB, ExbD and FepA for cells grown under iron-replete and iron-limited conditions. Under iron-replete conditions, TonB and FepA were present at 335 +/- 78 and 504 +/- 165 copies per cell respectively. ExbB and ExbD, despite being encoded from the same operon, were not equimolar, being present at 2463 +/- 522 and 741 +/- 105 copies respectively. The ratio of these proteins was calculated at one TonB:two ExbD:seven ExbB under all four growth conditions tested. In contrast, the TonB:FepA ratio varied with iron status and according to the method used for iron limitation. Differences in the method of iron limitation also resulted in significant differences in cell size, skewing the per cell copy numbers for all proteins.
引用
收藏
页码:271 / 281
页数:11
相关论文
共 44 条
[1]   CHARACTERIZATION OF THE EXBBD OPERON OF ESCHERICHIA-COLI AND THE ROLE OF EXBB AND EXBD IN TONB FUNCTION AND STABILITY [J].
AHMER, BMM ;
THOMAS, MG ;
LARSEN, RA ;
POSTLE, K .
JOURNAL OF BACTERIOLOGY, 1995, 177 (16) :4742-4747
[2]  
BOISSEL JP, 1988, J BIOL CHEM, V263, P8443
[3]   Energy-coupled transport across the outer membrane of Escherichia coli: ExbB binds ExbD and TonB in vitro, and leucine 132 in the periplasmic region and aspartate 25 in the transmembrane region are important for ExbD activity [J].
Braun, V ;
Gaisser, S ;
Herrmann, C ;
Kampfenkel, K ;
Killmann, H ;
Traub, I .
JOURNAL OF BACTERIOLOGY, 1996, 178 (10) :2836-2845
[4]   TRANSPORT OF IRON ACROSS THE OUTER-MEMBRANE [J].
BRAUN, V ;
GUNTER, K ;
HANTKE, K .
BIOLOGY OF METALS, 1991, 4 (01) :14-22
[5]  
Buchanan SK, 1999, NAT STRUCT BIOL, V6, P56
[6]   Crystal structure of the dimeric C-terminal domain of TonB reveals a novel fold [J].
Chang, CS ;
Mooser, A ;
Plückthun, A ;
Wlodawer, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (29) :27535-27540
[7]   COORDINATION CHEMISTRY OF MICROBIAL IRON TRANSPORT COMPOUNDS .35. RECOGNITION AND TRANSPORT OF FERRIC ENTEROBACTIN IN ESCHERICHIA-COLI [J].
ECKER, DJ ;
MATZANKE, BF ;
RAYMOND, KN .
JOURNAL OF BACTERIOLOGY, 1986, 167 (02) :666-673
[8]   IMPORT OF BIO-POLYMERS INTO ESCHERICHIA-COLI - NUCLEOTIDE-SEQUENCES OF THE EXBB AND EXBD GENES ARE HOMOLOGOUS TO THOSE OF THE TOLQ AND TOLR GENES, RESPECTIVELY [J].
EICKHELMERICH, K ;
BRAUN, V .
JOURNAL OF BACTERIOLOGY, 1989, 171 (09) :5117-5126
[9]   Opening the iron box:: Transcriptional metalloregulation by the fur protein [J].
Escolar, L ;
Pérez-Martín, J ;
De Lorenzo, V .
JOURNAL OF BACTERIOLOGY, 1999, 181 (20) :6223-6229
[10]   INVOLVEMENT OF EXBB AND TONB IN TRANSPORT ACROSS THE OUTER-MEMBRANE OF ESCHERICHIA-COLI - PHENOTYPIC COMPLEMENTATION OF EXB MUTANTS BY OVEREXPRESSED TONB AND PHYSICAL STABILIZATION OF TONB BY EXBB [J].
FISCHER, E ;
GUNTER, K ;
BRAUN, V .
JOURNAL OF BACTERIOLOGY, 1989, 171 (09) :5127-5134