Construction of hairpin ribozymes with a three-way junction

被引:25
作者
Komatsu, Y [1 ]
Shirai, M [1 ]
Yamashita, S [1 ]
Ohtsuka, E [1 ]
机构
[1] HOKKAIDO UNIV,FAC PHARMACEUT SCI,SAPPORO,HOKKAIDO 060,JAPAN
关键词
D O I
10.1016/S0968-0896(97)00042-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hairpin ribozymes with high cleavage activities were designed. An extra sequence was introduced at the 3'-end of the hairpin ribozyme to increase the binding to the substrate RNA, as compared to the wild-type hairpin ribozyme. A three-way junction (TWJ) was formed between the newly designed ribozyme and the substrate RNA. The complex with a solid TWJ showed less RNA cleavage activity than the wild-type hairpin ribozyme. However, the ribozyme with a TWJ with five unpaired bases or propandiol phosphate linkers had higher cleavage activity than the parent ribozyme without the TWJ. When a cis-cleavage system, in which the 5'-end of the substrate RNA was conjugated to the 3'-end of the ribozyme, was employed, the complex with the TWJ containing unpaired bases was also cleaved faster than the complex with the solid TWJ. This suggested that these differences in the cleavage activities were derived from the conformation, and this was proven by nondenaturing gel electrophoresis. The TWJ hairpin ribozyme containing unpaired bases is able to bind strongly with substrate RNAs and to cleave them efficiently. Since the three-way ribozyme presented here is more active than the wild-type ribozyme, this type of ribozyme can serve as a more efficient tool to control RNA activities in vitro and in vivo. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:1063 / 1069
页数:7
相关论文
共 45 条
[1]   MUTAGENESIS OF THE HAIRPIN RIBOZYME [J].
ANDERSON, P ;
MONFORTE, J ;
TRITZ, R ;
NESBITT, S ;
HEARST, J ;
HAMPEL, A .
NUCLEIC ACIDS RESEARCH, 1994, 22 (06) :1096-1100
[2]   IONIC INTERACTIONS AND THE GLOBAL CONFORMATIONS OF THE HAMMERHEAD RIBOZYME [J].
BASSI, GS ;
MOLLEGAARD, NE ;
MURCHIE, AIH ;
VONKITZING, E ;
LILLEY, DMJ .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (01) :45-55
[3]   INVITRO SELECTION OF ACTIVE HAIRPIN RIBOZYMES BY SEQUENTIAL RNA-CATALYZED CLEAVAGE AND LIGATION REACTIONS [J].
BERZALHERRANZ, A ;
JOSEPH, S ;
BURKE, JM .
GENES & DEVELOPMENT, 1992, 6 (01) :129-134
[4]   ESSENTIAL NUCLEOTIDE-SEQUENCES AND SECONDARY STRUCTURE ELEMENTS OF THE HAIRPIN RIBOZYME [J].
BERZALHERRANZ, A ;
JOSEPH, S ;
CHOWRIRA, BM ;
BUTCHER, SE ;
BURKE, JM .
EMBO JOURNAL, 1993, 12 (06) :2567-2574
[5]   A PHOTO-CROSS-LINKABLE TERTIARY STRUCTURE MOTIF FOUND IN FUNCTIONALLY DISTINCT RNA MOLECULES IS ESSENTIAL FOR CATALYTIC FUNCTION OF THE HAIRPIN RIBOZYME [J].
BUTCHER, SE ;
BURKE, JM .
BIOCHEMISTRY, 1994, 33 (04) :992-999
[6]   STRUCTURE-MAPPING OF THE HAIRPIN RIBOZYME - MAGNESIUM-DEPENDENT FOLDING AND EVIDENCE FOR TERTIARY INTERACTIONS WITHIN THE RIBOZYME-SUBSTRATE COMPLEX [J].
BUTCHER, SE ;
BURKE, JM .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 244 (01) :52-63
[7]  
BUTCHER SE, 1995, J BIOL CHEM, V270, P29648
[8]   NONENZYMATIC CLEAVAGE AND LIGATION OF RNAS COMPLEMENTARY TO A PLANT-VIRUS SATELLITE RNA [J].
BUZAYAN, JM ;
GERLACH, WL ;
BRUENING, G .
NATURE, 1986, 323 (6086) :349-353
[9]   Solution structure of loop a from the hairpin ribozyme from tobacco ringspot virus satellite [J].
Cai, ZP ;
Tinoco, I .
BIOCHEMISTRY, 1996, 35 (19) :6026-6036
[10]   NOVEL GUANOSINE REQUIREMENT FOR CATALYSIS BY THE HAIRPIN RIBOZYME [J].
CHOWRIRA, BM ;
BERZALHERRANZ, A ;
BURKE, JM .
NATURE, 1991, 354 (6351) :320-322