Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

被引:518
作者
Ben Clennell, M [1 ]
Hovland, M
Booth, JS
Henry, P
Winters, WJ
机构
[1] US Geol Survey, Woods Hole, MA 02543 USA
[2] Univ Fed Bahia, Ctr Pesquisa Geofis & Geol, BR-40210340 Salvador, BA, Brazil
[3] STATOIL, N-4034 Stavanger, Norway
[4] Ecole Normale Super, Geol Lab, F-75231 Paris, France
关键词
D O I
10.1029/1999JB900175
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates, Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important, The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable presence of free gas within the normal zone of hydrate stability.
引用
收藏
页码:22985 / 23003
页数:19
相关论文
共 125 条
[1]  
ADAMSON AW, 1997, PHYSICAL CHEM SURFAC
[3]   SEISMIC STUDIES OF A BOTTOM SIMULATING REFLECTION RELATED TO GAS HYDRATE BENEATH THE CONTINENTAL-MARGIN OF THE BEAUFORT SEA [J].
ANDREASSEN, K ;
HART, PE ;
GRANTZ, A .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1995, 100 (B7) :12659-12673
[4]  
[Anonymous], P ODP SCI RES
[5]  
BONDAREV EA, 1996, 2 INT C NAT GAS HYDR
[6]  
Booth JS, 1998, GEOL SOC SPEC PUBL, V137, P113, DOI 10.1144/GSL.SP.1998.137.01.08
[7]  
Booth JS, 1996, CITESEER
[8]  
Borowski WS, 1996, GEOLOGY, V24, P655, DOI 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO
[9]  
2
[10]  
Brewer PG, 1997, GEOLOGY, V25, P407, DOI 10.1130/0091-7613(1997)025<0407:DOFTOM>2.3.CO