Automatic identification of cardiac health using modeling techniques: A comparative study

被引:72
作者
Acharya, U. Rajendra [1 ]
Sankaranarayanan, Meena [2 ]
Nayak, Jagadish [3 ]
Xiang, Chen [2 ]
Tamura, Toshiyo [4 ]
机构
[1] Ngee Ann Polytech, Dept ECE, Singapore 599489, Singapore
[2] Inst Infocomm Res, Singapore 138632, Singapore
[3] Manipal Inst Technol, Dept E&C, Manipal 5761204, Karnataka, India
[4] Chiba Univ, Dept Med Syst Engn, Chiba 2638522, Japan
关键词
Electrocardiogram (ECG); R-R interval; Heart rate variability (HRV); Spectral analysis; Fast Fourier transforms; Artificial neural network;
D O I
10.1016/j.ins.2008.08.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Heart rate variability (HRV), a widely adopted quantitative marker of the autonomic nervous system can be used as a predictor of risk of cardiovascular diseases. Moreover, decreased heart rate variability (HRV) has been associated with an increased risk of cardiovascular diseases. Hence in this work HRV signal is used as the base signal for predicting the risk of cardiovascular diseases. The present study concerns nine cardiac classes that include normal sinus rhythm (NSR), congestive heart failure (CHF), atrial fibrillation (AF), ventricular fibrillation (VF), preventricular contraction (PVC), left bundle branch block (LBBB), complete heart block (CHB), ischemic/dilated cardiomyopathy (ISCH) and sick sinus syndrome (SSS). A total of 352 cardiac subjects belonging to the nine classes were analyzed in the frequency domain. The fast Fourier transforms (FFT) and three other modeling techniques namely, autoregressive (AR) model, moving average (MA) model and the autoregressive moving average (ARMA) model are used to estimate the power spectral densities of the RR interval variability. The spectral parameters obtained from the spectral analysis of the HRV signals are used as the input parameters to the artificial neural network (ANN) for classification of the different cardiac classes. Our findings reveal that the ARMA modeling technique seems to give better resolution and would be more promising for clinical diagnosis. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:4571 / 4582
页数:12
相关论文
共 53 条
[1]   Comprehensive analysis of cardiac health using heart rate signals [J].
Acharya, R ;
Kannathal, N ;
Krishnan, SM .
PHYSIOLOGICAL MEASUREMENT, 2004, 25 (05) :1139-1151
[2]   Classification of cardiac abnormalities using heart rate signals [J].
Acharya, RA ;
Kumar, A ;
Bhat, PS ;
Lim, CM ;
Iyengar, SS ;
Kannathal, N ;
Krishnan, SM .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2004, 42 (03) :288-293
[3]  
Acharya U.R., 2007, ADV CARDIAC SIGNAL P, DOI DOI 10.1007/978-3-540-36675-1_5
[4]   Heart rate variability: a review [J].
Acharya, U. Rajendra ;
Joseph, K. Paul ;
Kannathal, N. ;
Lim, Choo Min ;
Suri, Jasjit S. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2006, 44 (12) :1031-1051
[5]  
Acharya UR, 2005, INNOVATIONS TECHNOLO, V26, P133
[6]   FITTING AUTOREGRESSIVE MODELS FOR PREDICTION [J].
AKAIKE, H .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1969, 21 (02) :243-&
[7]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[8]   HEMODYNAMIC REGULATION - INVESTIGATION BY SPECTRAL-ANALYSIS [J].
AKSELROD, S ;
GORDON, D ;
MADWED, JB ;
SNIDMAN, NC ;
SHANNON, DC ;
COHEN, RJ .
AMERICAN JOURNAL OF PHYSIOLOGY, 1985, 249 (04) :H867-H875
[9]   HEMODYNAMIC REGULATION IN SHR - INVESTIGATION BY SPECTRAL-ANALYSIS [J].
AKSELROD, S ;
ELIASH, S ;
OZ, O ;
COHEN, S .
AMERICAN JOURNAL OF PHYSIOLOGY, 1987, 253 (01) :H176-H183
[10]   POWER SPECTRUM ANALYSIS OF HEART-RATE FLUCTUATION - A QUANTITATIVE PROBE OF BEAT-TO-BEAT CARDIOVASCULAR CONTROL [J].
AKSELROD, S ;
GORDON, D ;
UBEL, FA ;
SHANNON, DC ;
BARGER, AC ;
COHEN, RJ .
SCIENCE, 1981, 213 (4504) :220-222