The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells

被引:588
作者
Gandre-Babbe, Shilpa [1 ]
van der Bliek, Alexander M. [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1091/mbc.E07-12-1287
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Few components of the mitochondrial fission machinery are known, even though mitochondrial fission is a complex process of vital importance for cell growth and survival. Here, we describe a novel protein that controls mitochondrial fission. This protein was identified in a small interfering RNA (siRNA) screen using Drosophila cells. The human homologue of this protein was named Mitochondrial fission factor (Mff). Mitochondria of cells transfected with Mff siRNA form a closed network similar to the mitochondrial networks formed when cells are transfected with siRNA for two established fission proteins, Drp1 and Fis1. Like Drp1 and Fis1 siRNA, Mff siRNA also inhibits fission induced by loss of mitochondrial membrane potential, it delays cytochrome c release from mitochondria and further progression of apoptosis, and it inhibits peroxisomal fission. Mff and Fis1 are both tail anchored in the mitochondrial outer membrane, but other parts of these proteins are very different and they exist in separate 200-kDa complexes, suggesting that they play different roles in the fission process. We conclude that Mff is a novel component of a conserved membrane fission pathway used for constitutive and induced fission of mitochondria and peroxisomes.
引用
收藏
页码:2402 / 2412
页数:11
相关论文
共 67 条
[1]   OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28 [J].
Alexander, C ;
Votruba, M ;
Pesch, UEA ;
Thiselton, DL ;
Mayer, S ;
Moore, A ;
Rodriguez, M ;
Kellner, U ;
Leo-Kottler, B ;
Auburger, G ;
Bhattacharya, SS ;
Wissinger, B .
NATURE GENETICS, 2000, 26 (02) :211-215
[2]   Functional genomics reveals genes involved in protein secretion and Golgi organization [J].
Bard, F ;
Casano, L ;
Mallabiabarrena, A ;
Wallace, E ;
Saito, K ;
Kitayama, H ;
Guizzunti, G ;
Hu, Y ;
Wendler, F ;
DasGupta, R ;
Perrimon, N ;
Malhotra, V .
NATURE, 2006, 439 (7076) :604-607
[3]   DYNAMICS OF MITOCHONDRIA IN LIVING CELLS - SHAPE CHANGES, DISLOCATIONS, FUSION, AND FISSION OF MITOCHONDRIA [J].
BEREITERHAHN, J ;
VOTH, M .
MICROSCOPY RESEARCH AND TECHNIQUE, 1994, 27 (03) :198-219
[4]   Dimeric Dnm1-G385D interacts with mdv1 on mitochondria and can be stimulated to assemble into fission complexes containing Mdv1 and Fis1 [J].
Bhar, Debjani ;
Karren, Mary Anne ;
Babst, Markus ;
Shaw, Janet M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (25) :17312-17320
[5]   The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast [J].
Bleazard, W ;
McCaffery, JM ;
King, EJ ;
Bale, S ;
Mozdy, A ;
Tieu, Q ;
Nunnari, J ;
Shaw, JM .
NATURE CELL BIOLOGY, 1999, 1 (05) :298-304
[6]   How tails guide tail-anchored proteins to their destinations [J].
Borgese, Nica ;
Brambillasca, Silvia ;
Colombo, Sara .
CURRENT OPINION IN CELL BIOLOGY, 2007, 19 (04) :368-375
[7]   Division of mitochondria requires a novel DNM1-interacting protein, net2p [J].
Cerveny, KL ;
McCaffery, JM ;
Jensen, RE .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :309-321
[8]   Mitochondrial fusion and fission in mammals [J].
Chan, David C. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2006, 22 :79-99
[9]   Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology [J].
Chang, Chuang-Rung ;
Blackstone, Craig .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (30) :21583-21587
[10]   Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development [J].
Chen, HC ;
Detmer, SA ;
Ewald, AJ ;
Griffin, EE ;
Fraser, SE ;
Chan, DC .
JOURNAL OF CELL BIOLOGY, 2003, 160 (02) :189-200