From nanogenerators to piezotronics-A decade-long study of ZnO nanostructures

被引:172
作者
Wang, Zhong Lin [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Ctr Nanostruct Characterizat, Atlanta, GA 30332 USA
关键词
SINGLE-CRYSTAL NANORINGS; OUTPUT; SOLAR; NANOWIRES; EMISSION; DIODES; PHOTODETECTOR; NANOBELTS; SWITCHES; DEVICES;
D O I
10.1557/mrs.2012.186
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Developing wireless nanodevices and nanosystems is critical for sensing, medical science, environmental/infrastructure monitoring, defense technology, and even personal electronics. It is highly desirable for wireless devices to be self-powered without using a battery. We have developed piezoelectric nanogenerators that can serve as self-sufficient power sources for micro-/nanosystems. For wurtzite structures that have non-central symmetry, such as ZnO, GaN, and InN, a piezoelectric potential (piezopotential) is created by applying a strain. The nanogenerator uses the piezopotential as the driving force, responding to dynamic straining of piezoelectric nanowires. A gentle strain can produce an output voltage of up to 20-40 V from an integrated nanogenerator. Furthermore, piezopotential in the wurtzite structure can serve as a "gate" voltage that can effectively tune/control charge transport across an interface/junction; electronics based on such a mechanism are referred to as piezotronics, with applications such as electronic devices that are triggered or controlled by force or pressure, sensors, logic units, and memory. By using the piezotronic effect, we show that optoelectronic devices fabricated using wurtzite materials can provide superior performance for solar cells, photon detectors, and light-emitting diodes. Piezotronic devices are likely to serve as "mediators" for directly interfacing biomechanical action with silicon-based technology. This article reviews our study of ZnO nanostructures over the last 12 years, with a focus on nanogenerators and piezotronics.
引用
收藏
页码:814 / 827
页数:14
相关论文
共 59 条
[1]   The effect of homogeneous mechanical stress on the electrical resistance of crystals [J].
Bridgman, PW .
PHYSICAL REVIEW, 1932, 42 (06) :0858-0863
[2]   Control of naturally coupled piezoelectric and photovoltaic properties for multi-type energy scavengers [J].
Choi, Dukhyun ;
Lee, Keun Young ;
Jin, Mi-Jin ;
Ihn, Soo-Ghang ;
Yun, Sungyoung ;
Bulliard, Xavier ;
Choi, Woong ;
Lee, Sang Yoon ;
Kim, Sang-Woo ;
Choi, Jae-Young ;
Kim, Jong Min ;
Wang, Zhong Lin .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4607-4613
[3]   Conversion of zinc oxide nanobelts into superlattice-structured nanohelices [J].
Gao, PX ;
Ding, Y ;
Mai, WJ ;
Hughes, WL ;
Lao, CS ;
Wang, ZL .
SCIENCE, 2005, 309 (5741) :1700-1704
[4]   Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy [J].
Hansen, Benjamin J. ;
Liu, Ying ;
Yang, Rusen ;
Wang, Zhong Lin .
ACS NANO, 2010, 4 (07) :3647-3652
[5]   Piezoelectric gated diode of a single ZnO nanowire [J].
He, Jr-Hau ;
Hsin, Cheng L. ;
Liu, Jin ;
Chen, Lih J. ;
Wang, Zhong L. .
ADVANCED MATERIALS, 2007, 19 (06) :781-+
[6]   Replacing a Battery by a Nanogenerator with 20 V Output [J].
Hu, Youfan ;
Lin, Long ;
Zhang, Yan ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2012, 24 (01) :110-+
[7]   Self-Powered System with Wireless Data Transmission [J].
Hu, Youfan ;
Zhang, Yan ;
Xu, Chen ;
Lin, Long ;
Snyder, Robert L. ;
Wang, Zhong Lin .
NANO LETTERS, 2011, 11 (06) :2572-2577
[8]   High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display [J].
Hu, Youfan ;
Zhang, Yan ;
Xu, Chen ;
Zhu, Guang ;
Wang, Zhong Lin .
NANO LETTERS, 2010, 10 (12) :5025-5031
[9]   Optimizing the Power Output of a ZnO Photocell by Piezopotential [J].
Hu, Youfan ;
Zhang, Yan ;
Chang, Yanling ;
Snyder, Robert L. ;
Wang, Zhong Lin .
ACS NANO, 2010, 4 (07) :4220-4224
[10]   Designing the Electric Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling Piezoelectric and Photoexcitation Effects [J].
Hu, Youfan ;
Chang, Yanling ;
Fei, Peng ;
Snyder, Robert L. ;
Wang, Zhong Lin .
ACS NANO, 2010, 4 (02) :1234-1240