Ultra Strong Silicon-Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium-Ion Battery Anode

被引:163
作者
Evanoff, Kara [1 ,2 ]
Benson, Jim [1 ]
Schauer, Mark [3 ]
Kovalenko, Igor [1 ]
Lashmore, David [3 ]
Ready, W. Jud [1 ,2 ]
Yushin, Gleb [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Georgia Tech Res Inst, Electroopt Syst Lab, Atlanta, GA 30332 USA
[3] Nanocomp Technol Inc, Concord, NH 03301 USA
关键词
batteries; composite materials; multifunctional materials; electrodes; silicon; ELECTRICAL-CONDUCTIVITY; THERMAL-PROPERTIES; RAMAN-SCATTERING; GRAPHENE PAPER; ELECTRODES; INSERTION; GRAPHITE; STRENGTH; SPECTRA; DESIGN;
D O I
10.1021/nn303393p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Materials that can perform simultaneous functions allow for reductions in the total system mass and volume. Developing technologies to produce flexible batteries with good performance lit combination with high specific strength is strongly desired for weight- and power-sensitive applications such as unmanned or aerospace vehicles, high-performance ground vehicles, robotics, and smart textiles. State of the art battery electrode fabrication techniques are not conducive to the development of multifunctional materials due to their inherently low strength and conductivities. Here, we present a scalable method utilizing carbon nanotube (CNT) nonwoven fabric-based technology to develop flexible, electrochemically stable (similar to 494 mAh.g(-1) for 150 cycles). battery anodes that can be produced on an industrial scale and demonstrate specific strength higher than that Of titanium copper, and even a structural steel. Similar methods can be utilized for the formation of various' cathode and anode composites with tunable strength and energy and power densities.
引用
收藏
页码:9837 / 9845
页数:9
相关论文
共 58 条
[1]   Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries [J].
Abouimrane, Ali ;
Compton, Owen C. ;
Amine, Khalil ;
Nguyen, SonBinh T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (29) :12800-12804
[2]  
[Anonymous], 2001, CRC MAT SCI ENG HDB
[3]   Multifunctional self-charging structures using piezoceramics and thin-film batteries [J].
Anton, S. R. ;
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2010, 19 (11)
[4]   Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation [J].
Antunes, E. F. ;
Lobo, A. O. ;
Corat, E. J. ;
Trava-Airoldi, V. J. ;
Martin, A. A. ;
Verissimo, C. .
CARBON, 2006, 44 (11) :2202-2211
[5]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[6]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[7]   Electrode optimisation for carbon power supercapacitors [J].
Bonnefoi, L ;
Simon, P ;
Fauvarque, JF ;
Sarrazin, C ;
Dugast, A .
JOURNAL OF POWER SOURCES, 1999, 79 (01) :37-42
[8]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[9]   Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries [J].
Bridel, J. -S. ;
Azais, T. ;
Morcrette, M. ;
Tarascon, J. -M. ;
Larcher, D. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :1229-1241
[10]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35