The molecular bases for resistance to acetyl co-enzyme A carboxylase (ACCase) inhibiting herbicides in two target-based resistant biotypes of annual ryegrass (Lolium rigidum)

被引:60
作者
Zhang, XQ [1 ]
Powles, SB [1 ]
机构
[1] Univ Western Australia, Sch Plant Biol, WA Herbicide Resistance Initiat, Crawley, WA 6009, Australia
关键词
ACCase gene; alleles; herbicide resistance; point mutation; Lolium rigidum;
D O I
10.1007/s00425-005-0095-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Acetyl-CoA carboxylase (ACCase) (EC.6.4.1.2) is an essential enzyme in fatty acid biosynthesis and, in world agriculture, commercial herbicides target this enzyme in plant species. In nearly all grass species the plastidic ACCase is strongly inhibited by commercial ACCase inhibiting herbicides [aryloxyphenoxypropionate (APP) and cyclohexanedione (CHD) herbicide chemicals]. Many ACCase herbicide resistant biotypes (populations) of L. rigidum have evolved, especially in Australia. In many cases, resistance to ACCase inhibiting herbicides is due to a resistant ACCase enzyme. Two ACCase herbicide resistant L. rigidum biotypes were studied to identify the molecular basis of ACCase inhibiting herbicide resistance. The carboxyl-transferase (CT) domain of the plastidic ACCase gene was amplified by PCR and sequenced. Amino acid substitutions in the CT domain were identified by comparison of sequences from resistant and susceptible plants. The amino acid residues Gln-102 (CAG codon) and Ile-127 (ATA codon) were substituted with a Glu residue (GAG codon) and Leu residue (TTA codon), respectively, in both resistant biotypes. Amino acid positions 102 and 127 within the fragment sequenced from L. rigidum corresponded to amino acid residues 1756 and 1781, respectively, in the A. myosuroides full ACCase sequence. Allele-specific PCR results further confirmed the mutations linked with resistance in these populations. The Ile-to-Leu substitution at position 1781 has been identified in other resistant grass species as endowing resistance to APP and CHD herbicides. The Gln-to-Glu substitution at position 1756 has not previously been reported and its role in herbicide resistance remains to be established.
引用
收藏
页码:550 / 557
页数:8
相关论文
共 26 条
[1]   An isoleucine to leucine substitution in the ACCase of Alopecurus myosuroides (black-grass) is associated with resistance to the herbicide sethoxydim [J].
Brown, AC ;
Moss, SR ;
Wilson, ZA ;
Field, LM .
PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 2002, 72 (03) :160-168
[2]   KINETICS OF INHIBITION OF ACETYL-COENZYME-A CARBOXYLASE BY SETHOXYDIM AND HALOXYFOP [J].
BURTON, JD ;
GRONWALD, JW ;
KEITH, RA ;
SOMERS, DA ;
GENGENBACH, BG ;
WYSE, DL .
PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 1991, 39 (02) :100-109
[3]   An isoleucine to leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat [J].
Christoffers, MJ ;
Berg, ML ;
Messersmith, CG .
GENOME, 2002, 45 (06) :1049-1056
[4]   Molecular bases for sensitivity to acetyl-coenzyme a carboxylase inhibitors in black-grass [J].
Délye, C ;
Zhang, XQ ;
Michel, S ;
Matéjicek, A ;
Powles, SB .
PLANT PHYSIOLOGY, 2005, 137 (03) :794-806
[5]   An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione inhibitors [J].
Délye, C ;
Zhang, XQ ;
Chalopin, C ;
Michel, S ;
Powles, SB .
PLANT PHYSIOLOGY, 2003, 132 (03) :1716-1723
[6]   PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud) [J].
Délye, C ;
Matéjicek, A ;
Gasquez, J .
PEST MANAGEMENT SCIENCE, 2002, 58 (05) :474-478
[7]   An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim [J].
Délye, C ;
Wang, TY ;
Darmency, H .
PLANTA, 2002, 214 (03) :421-427
[8]   SNP markers for black-grass (Alopecurus myosuroides Huds.) genotypes resistant to acetyl CoA-carboxylase inhibiting herbicides [J].
Délye, C ;
Calmès, É ;
Matéjicek, A .
THEORETICAL AND APPLIED GENETICS, 2002, 104 (6-7) :1114-1120
[9]  
Devine M. D., 1994, P141
[10]  
Devine MD, 1997, PESTIC SCI, V51, P259, DOI 10.1002/(SICI)1096-9063(199711)51:3&lt