Non-conventional low-cost adsorbents for dye removal: A review

被引:3507
作者
Crini, G [1 ]
机构
[1] Univ Franche Comte, SERAC, Ctr Spect, F-25000 Besancon, France
关键词
dyes; adsorption; low-cost adsorbents; wastewater treatment;
D O I
10.1016/j.biortech.2005.05.001
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those that are not easily biodegradable. Dyes represent one of the problematic groups. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred sorbent for color removal, its widespread use is restricted due to high cost. As such, alternative non-conventional sorbents have been investigated. It is well-known that natural materials, waste materials from industry and agriculture and biosorbents can be obtained and employed as inexpensive sorbents. In this review, an extensive list of sorbent literature has been compiled. The review (i) presents a critical analysis of these materials; (ii) describes their characteristics, advantages and limitations, and (iii) discusses various mechanisms involved. It is evident from a literature survey of about 210 recent papers that low-cost sorbents have demonstrated outstanding removal capabilities for certain dyes. In particular, chitosan might be a promising adsorbent for environmental and purification purposes. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1061 / 1085
页数:25
相关论文
共 235 条
[1]   Adsorption of Congo red from aqueous solution onto calcium-rich fly ash [J].
Acemioglu, B .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 274 (02) :371-379
[2]   Batch kinetic study of sorption of methylene blue by perlite [J].
Acemioglu, B .
CHEMICAL ENGINEERING JOURNAL, 2005, 106 (01) :73-81
[3]   REMOVAL OF BASIC DYE FROM WASTE-WATER USING SILICA AS ADSORBENT [J].
AHMED, MN ;
RAM, RN .
ENVIRONMENTAL POLLUTION, 1992, 77 (01) :79-86
[4]   Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties [J].
Ahmedna, M ;
Marshall, WE ;
Rao, RM .
BIORESOURCE TECHNOLOGY, 2000, 71 (02) :113-123
[5]   Biosorption of reactive dyes on the green alga Chlorella vulgaris [J].
Aksu, Z ;
Tezer, S .
PROCESS BIOCHEMISTRY, 2005, 40 (3-4) :1347-1361
[6]   Application of biosorption for the removal of organic pollutants: A review [J].
Aksu, Z .
PROCESS BIOCHEMISTRY, 2005, 40 (3-4) :997-1026
[7]   Reactive dye bioaccumulation by Saccharomyces cerevisiae [J].
Aksu, Z .
PROCESS BIOCHEMISTRY, 2003, 38 (10) :1437-1444
[8]   A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye [J].
Aksu, Z ;
Dönmez, G .
CHEMOSPHERE, 2003, 50 (08) :1075-1083
[9]   Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling [J].
Aksu, Z .
BIOCHEMICAL ENGINEERING JOURNAL, 2001, 7 (01) :79-84
[10]   Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system:: effect of temperature [J].
Aksu, Z ;
Tezer, S .
PROCESS BIOCHEMISTRY, 2000, 36 (05) :431-439