Exploring the origins of topological frustration: Design of a minimally frustrated model of fragment B of protein A

被引:204
作者
Shea, JE
Onuchic, JN
Brooks, CL
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
关键词
alpha-helical protein; Fersht phi values; minimalist off-lattice model; topological frustration;
D O I
10.1073/pnas.96.22.12512
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological frustration in an energetically unfrustrated off-lattice model of the helical protein fragment B of protein A from Staphylococcus aureus was investigated. This G (o) over tilde-type model exhibited thermodynamic and kinetic signatures of a well-designed two-state folder with concurrent collapse and folding transitions and single exponential kinetics at the transition temperature. Topological frustration is determined in the absence of energetic frustration by the distribution of Fersht phi values. Topologically unfrustrated systems present a unimodal distribution sharply peaked at intermediate phi, whereas highly frustrated systems display a bimodal distribution peaked at low and high phi values. The distribution of phi values in protein A was determined hath thermodynamically and kinetically. Both methods yielded a unimodal distribution centered at phi = 0.3 with tails extending to low and high cp values, indicating the presence of a small amount of topological frustration. The contacts with high phi values were located in the turn regions between helices I and II and II and Ill, intimating that these hairpins are in large part required in the transition state. Our results are in good agreement with all-atom simulations of protein A, as well as lattice simulations of a three- letter code 27-mer (which can be compared with a GO-residue helical protein). The relatively broad unimodal distribution of phi values obtained from the all-atom simulations and that from the minimalist model for the same native fold suggest that the structure of the transition state ensemble is determined mostly by the protein topology and not energetic frustration.
引用
收藏
页码:12512 / 12517
页数:6
相关论文
共 48 条
[1]   FREE-ENERGY LANDSCAPE FOR PROTEIN-FOLDING KINETICS - INTERMEDIATES, TRAPS, AND MULTIPLE PATHWAYS IN THEORY AND LATTICE MODEL SIMULATIONS [J].
ABKEVICH, VI ;
GUTIN, AM ;
SHAKHNOVICH, EI .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (07) :6052-6062
[2]  
[Anonymous], FOLDING DESIGN
[3]   Absence of a stable intermediate on the folding pathway of protein A [J].
Bai, YW ;
Karimi, A ;
Dyson, HJ ;
Wright, PE .
PROTEIN SCIENCE, 1997, 6 (07) :1449-1457
[4]   Linking topography of its potential surface with the dynamics of folding of a protein model [J].
Berry, RS ;
Elmaci, N ;
Rose, JP ;
Vekhter, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (18) :9520-9524
[5]   KINETICS OF PROTEIN-LIKE MODELS - THE ENERGY LANDSCAPE FACTORS THAT DETERMINE FOLDING [J].
BETANCOURT, MR ;
ONUCHIC, JN .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (02) :773-787
[6]   FIRST-PRINCIPLES CALCULATION OF THE FOLDING FREE-ENERGY OF A 3-HELIX BUNDLE PROTEIN [J].
BOCZKO, EM ;
BROOKS, CL .
SCIENCE, 1995, 269 (5222) :393-396
[7]   THE STABILITY AND UNFOLDING OF AN IGG BINDING-PROTEIN BASED UPON THE B-DOMAIN OF PROTEIN-A FROM STAPHYLOCOCCUS-AUREUS PROBED BY TRYPTOPHAN SUBSTITUTION AND FLUORESCENCE SPECTROSCOPY [J].
BOTTOMLEY, SP ;
POPPLEWELL, AG ;
SCAWEN, M ;
WAN, T ;
SUTTON, BJ ;
GORE, MG .
PROTEIN ENGINEERING, 1994, 7 (12) :1463-1470
[8]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[9]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[10]   SPIN-GLASSES AND THE STATISTICAL-MECHANICS OF PROTEIN FOLDING [J].
BRYNGELSON, JD ;
WOLYNES, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7524-7528