Interaction of mantle plumes and migrating mid-ocean ridges: Implications for the Galapagos plume-ridge system

被引:93
作者
Ito, G
Lin, J
Gable, CW
机构
[1] WOODS HOLE OCEANOG INST, DEPT GEOL & GEOPHYS, WOODS HOLE, MA 02543 USA
[2] LOS ALAMOS NATL LAB, LOS ALAMOS, NM 87545 USA
关键词
D O I
10.1029/97JB01049
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We investigate the three-dimensional interaction of mantle plumes and migrating mid-ocean ridges with variable viscosity numerical models. Numerical models predict that along-axis plume width W and maximum distance of plume-ridge interaction x(max) scale with (Q/U)(1/2), where Q is plume source volume flux and U is ridge full spreading rate. Both W and x(max) increase with buoyancy number Pi(b) which reflects the strength of gravitational- versus plate-driven spreading. Scaling laws derived for stationary ridges in steady-state with near-ridge plumes are consistent with those obtained from independent studies of Ribe [1996]. In the case of a migrating ridge, the distance of plume-ridge interaction is reduced when a ridge migrates toward the plume because of the excess drag of the faster moving leading plate and enhanced when a ridge migrates away from the plume because of the reduced drag of the slower moving trailing plate. Given the mildly buoyant and relatively viscous plumes investigated here, the slope of the lithospheric boundary and thermal erosion of the lithosphere have little effect on plume flow. From observed plume widths of the Galapagos plume-migrating ridge system, our scaling laws yield estimates of Galapagos plume volume flux of 5-16 x 10(6) km(3) m.y.(-1) and a buoyancy flux of similar to 2 x 10(3) kg s(-1). Model results that the observed increase isochron age is due to higher crustal production when the Galapagos ridge axis was closer to the plume several million years ago. The anomaly amplitudes can be explained by a plume source with a relatively mild temperature anomaly (50 degrees-100 degrees C) and moderate radius (100-200 km). Predictions of the along-axis geochemical signature of the plume suggest that mixing between the plume and ambient mantle sources may not occur in the asthenosphere but, instead, may occur deeper in the mantle possibly by entrainment of depleted mantle as the plume ascends from its source.
引用
收藏
页码:15403 / 15417
页数:15
相关论文
共 49 条
[1]   ON MODELING THE THERMAL EVOLUTION OF THE OCEANIC UPPER-MANTLE - AN ASSESSMENT OF THE COOLING PLATE MODEL [J].
CARLSON, RL ;
JOHNSON, HP .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1994, 99 (B2) :3201-3214
[2]   CONVECTION WITH PRESSURE-DEPENDENT AND TEMPERATURE-DEPENDENT NON-NEWTONIAN RHEOLOGY [J].
CHRISTENSEN, U .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1984, 77 (02) :343-384
[3]   EFFECT OF RECENT REVISIONS TO THE GEOMAGNETIC REVERSAL TIME-SCALE ON ESTIMATES OF CURRENT PLATE MOTIONS [J].
DEMETS, C ;
GORDON, RG ;
ARGUS, DF ;
STEIN, S .
GEOPHYSICAL RESEARCH LETTERS, 1994, 21 (20) :2191-2194
[4]   NUMERICAL MODELING OF CHEMICALLY BUOYANT MANTLE PLUMES AT SPREADING RIDGES [J].
FEIGHNER, MA ;
KELLOGG, LH .
GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (06) :715-718
[5]   THE FLUID-DYNAMICS OF PLUME-RIDGE AND PLUME-PLATE INTERACTIONS - AN EXPERIMENTAL INVESTIGATION [J].
FEIGHNER, MA ;
RICHARDS, MA .
EARTH AND PLANETARY SCIENCE LETTERS, 1995, 129 (1-4) :171-182
[6]  
GABLE C, 1989, THESIS HARVARD U CAM
[7]   CONVECTION IN 3 DIMENSIONS WITH SURFACE PLATES - GENERATION OF TOROIDAL FLOW [J].
GABLE, CW ;
OCONNELL, RJ ;
TRAVIS, BJ .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1991, 96 (B5) :8391-8405
[8]   PLUME-ASTHENOSPHERE MIXING BENEATH THE GALAPAGOS ARCHIPELAGO [J].
GEIST, DJ ;
WHITE, WM ;
MCBIRNEY, AR .
NATURE, 1988, 333 (6174) :657-660
[9]   MANTLE PLUME HELIUM IN SUBMARINE BASALTS FROM THE GALAPAGOS PLATFORM [J].
GRAHAM, DW ;
CHRISTIE, DM ;
HARPP, KS ;
LUPTON, JE .
SCIENCE, 1993, 262 (5142) :2023-2026
[10]   CURRENT PLATE VELOCITIES RELATIVE TO THE HOTSPOTS INCORPORATING THE NUVEL-1 GLOBAL PLATE MOTION MODEL [J].
GRIPP, AE ;
GORDON, RG .
GEOPHYSICAL RESEARCH LETTERS, 1990, 17 (08) :1109-1112