An efficient and exact stochastic simulation method to analyze rare events in biochemical systems

被引:48
作者
Kuwahara, Hiroyuki [1 ]
Mura, Ivan [1 ]
机构
[1] Microsoft Res Univ Trento, Ctr Computat & Syst Biol, I-38100 Trento, Italy
关键词
D O I
10.1063/1.2987701
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In robust biological systems, wide deviations from highly controlled normal behavior may be rare, yet they may result in catastrophic complications. While in silico analysis has gained an appreciation as a tool to offer insights into system-level properties of biological systems, analysis of such rare events provides a particularly challenging computational problem. This paper proposes an efficient stochastic simulation method to analyze rare events in biochemical systems. Our new approach can substantially increase the frequency of the rare events of interest by appropriately manipulating the underlying probability measure of the system, allowing high-precision results to be obtained with substantially fewer simulation runs than the conventional direct Monte Carlo simulation. Here, we show the algorithm of our new approach, and we apply it to the analysis of rare deviant transitions of two systems, resulting in several orders of magnitude speedup in generating high-precision estimates compared with the conventional Monte Carlo simulation. (C) 2008 American Institute of Physics. [DOI:10.1063/1.2987701]
引用
收藏
页数:10
相关论文
共 26 条
[1]  
[Anonymous], 1990, HDB STOCHASTIC METHO
[2]  
[Anonymous], 1994, Concrete Mathematics: a Foundation for Computer Science
[3]   Efficient formulation of the stochastic simulation algorithm for chemically reacting systems [J].
Cao, Y ;
Li, H ;
Petzold, L .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (09) :4059-4067
[4]   Bow ties, metabolism and disease [J].
Csete, M ;
Doyle, J .
TRENDS IN BIOTECHNOLOGY, 2004, 22 (09) :446-450
[5]   Epigenetics in human disease and prospects for epigenetic therapy [J].
Egger, G ;
Liang, GN ;
Aparicio, A ;
Jones, PA .
NATURE, 2004, 429 (6990) :457-463
[6]   Molecular origins of cancer: Epigenetics in cancer [J].
Esteller, Manel .
NEW ENGLAND JOURNAL OF MEDICINE, 2008, 358 (11) :1148-1159
[7]   Phenotypic plasticity and the epigenetics of human disease [J].
Feinberg, Andrew P. .
NATURE, 2007, 447 (7143) :433-440
[8]  
Gillespie D., 2005, HDB MAT MODELING, P1735
[9]   Stochastic simulation of chemical kinetics [J].
Gillespie, Daniel T. .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2007, 58 (35-55) :35-55
[10]   GENERAL METHOD FOR NUMERICALLY SIMULATING STOCHASTIC TIME EVOLUTION OF COUPLED CHEMICAL-REACTIONS [J].
GILLESPIE, DT .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (04) :403-434