New tolerance factor to predict the stability of perovskite oxides and halides

被引:1084
作者
Bartel, Christopher J. [1 ]
Sutton, Christopher [2 ]
Goldsmith, Bryan R. [3 ]
Ouyang, Runhai [2 ]
Musgrave, Charles B. [1 ,4 ,5 ]
Ghiringhelli, Luca M. [2 ]
Scheffler, Matthias [2 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[2] Max Planck Gesell, Fritz Haber Inst, Faradayweg 4-6, D-14195 Berlin, Germany
[3] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[4] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[5] Natl Renewable Energy Lab, Mat & Chem Sci & Technol Ctr, Golden, CO 80401 USA
基金
美国国家科学基金会; 欧盟地平线“2020”;
关键词
CRYSTAL-STRUCTURE PREDICTION; EFFECTIVE IONIC-RADII; FORMABILITY; SOLIDS; SR; BR;
D O I
10.1126/sciadv.aav0693
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting the stability of the perovskite structure remains a long-standing challenge for the discovery of new functional materials for many applications including photovoltaics and electrocatalysts. We developed an accurate, physically interpretable, and one-dimensional tolerance factor, 'r, that correctly predicts 92% of compounds as perovskite or nonperovskite for an experimental dataset of 576 ABX(3) materials (X = O2-, F-, Cl-, Br-, I-) using a novel data analytics approach based on SISSO (sure independence screening and sparsifying operator). tau is shown to generalize outside the training set for 1034 experimentally realized single and double perovskites (91% accuracy) and is applied to identify 23,314 new double perovskites (A(2)BB'X-6) ranked by their probability of being stable as perovskite. This work guides experimentalists and theorists toward which perovskites are most likely to be successfully synthesized and demonstrates an approach to descriptor identification that can be extended to arbitrary applications beyond perovskite stability predictions.
引用
收藏
页数:9
相关论文
共 44 条
[1]  
[Anonymous], ADV LARGE MARGIN CLA
[2]   Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory [J].
Balachandran, Prasanna V. ;
Emery, Antoine A. ;
Gubernatis, James E. ;
Lookman, Turab ;
Wolverton, Chris ;
Zunger, Alex .
PHYSICAL REVIEW MATERIALS, 2018, 2 (04)
[3]   Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors [J].
Becker, Markus ;
Kluener, Thorsten ;
Wark, Michael .
DALTON TRANSACTIONS, 2017, 46 (11) :3500-3509
[4]   Experimental and Computational Investigation of Effect of Sr on NO Oxidation and Oxygen Exchange for La1-xSrxCoO3 Perovskite Catalysts [J].
Choi, Sang Ok ;
Penninger, Michael ;
Kim, Chang Hwan ;
Schneider, William F. ;
Thompson, Levi T. .
ACS CATALYSIS, 2013, 3 (12) :2719-2728
[5]   ORIGIN OF FERROELECTRICITY IN PEROVSKITE OXIDES [J].
COHEN, RE .
NATURE, 1992, 358 (6382) :136-138
[6]   Promises and challenges of perovskite solar cells [J].
Correa-Baena, Juan-Pablo ;
Saliba, Michael ;
Buonassisi, Tonio ;
Graetzel, Michael ;
Abate, Antonio ;
Tress, Wolfgang ;
Hagfeldt, Anders .
SCIENCE, 2017, 358 (6364) :739-744
[7]  
Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/NMAT3568, 10.1038/nmat3568]
[8]   Thermodynamics of global optimization [J].
Doye, JPK ;
Wales, DJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (07) :1357-1360
[9]   Readily processed protonic ceramic fuel cells with high performance at low temperatures [J].
Duan, Chuancheng ;
Tong, Jianhua ;
Shang, Meng ;
Nikodemski, Stefan ;
Sanders, Michael ;
Ricote, Sandrine ;
Almansoori, Ali ;
O'Hayre, Ryan .
SCIENCE, 2015, 349 (6254) :1321-1326
[10]   Machine Learning Energies of 2 Million Elpasolite (ABC2D6) Crystals [J].
Faber, Felix A. ;
Lindmaa, Alexander ;
von Lilienfeld, O. Anatole ;
Armiento, Rickard .
PHYSICAL REVIEW LETTERS, 2016, 117 (13)