Cell wall peptidoglycan architecture in Bacillus subtilis

被引:179
作者
Hayhurst, Emma J. [1 ]
Kailas, Lekshmi [2 ,3 ]
Hobbs, Jamie K. [2 ,3 ]
Foster, Simon J. [1 ]
机构
[1] Univ Sheffield, Dept Mol Biol & Biotechnol, Western Bank, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Sheffield, Dept Chem, Sheffield S3 7HF, S Yorkshire, England
[3] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England
基金
英国惠康基金; 英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
D O I
10.1073/pnas.0804138105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The bacterial cell wall is essential for viability and shape determination. Cell wall structural dynamics allowing growth and division, while maintaining integrity is a basic problem governing the life of bacteria. The polymer peptidoglycan is the main structural component for most bacteria and is made up of glycan strands that are cross-linked by peptide side chains. Despite study and speculation over many years, peptidoglycan architecture has remained largely elusive. Here, we show that the model rod-shaped bacterium Bacillus subtilis has glycan strands up to 5 mu m, longer than the cell itself and 50 times longer than previously proposed. Atomic force microscopy revealed the glycan strands to be part of a peptidoglycan architecture allowing cell growth and division. The inner surface of the cell wall has a regular macrostructure with approximate to 50 nm-wide peptidoglycan cables [average 53 +/- 12 nm (n = 91)] running basically across the short axis of the cell. Cross striations with an average periodicity of 25 +/- 9 nm (n = 96) along each cable are also present. The fundamental cabling architecture is also maintained during septal development as part of cell division. We propose a coiled-coil model for peptidoglycan architecture encompassing our data and recent evidence concerning the biosynthetic machinery for this essential polymer.
引用
收藏
页码:14603 / 14608
页数:6
相关论文
共 38 条
[1]  
Archibald A. R., 1993, P381
[2]   Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation [J].
Atrih, A ;
Bacher, G ;
Allmaier, G ;
Williamson, MP ;
Foster, SJ .
JOURNAL OF BACTERIOLOGY, 1999, 181 (13) :3956-3966
[3]   The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis [J].
Bisicchia, Paola ;
Noone, David ;
Lioliou, Efthimia ;
Howell, Alistair ;
Quigley, Sarah ;
Jensen, Thomas ;
Jarmer, Hanne ;
Devine, Kevin M. .
MOLECULAR MICROBIOLOGY, 2007, 65 (01) :180-200
[4]   Characterization of Staphylococcus aureus cell wall glycan strands, evidence for a new β-N-acetylglucosaminidase activity [J].
Boneca, IG ;
Huang, ZH ;
Gage, DA ;
Tomasz, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (14) :9910-9918
[5]  
BRAUN V, 1973, J INFECT DIS S, V128, P9
[6]   Identification of in vivo-expressed antigens of Staphylococcus aureus and their use in vaccinations for protection against nasal carriage [J].
Clarke, SR ;
Brummell, KJ ;
Horsburgh, MJ ;
McDowell, PW ;
Mohamad, SAS ;
Stapleton, MR ;
Acevedo, J ;
Read, RC ;
Day, NPJ ;
Peacock, SJ ;
Mond, JJ ;
Kokai-Kun, JF ;
Foster, SJ .
JOURNAL OF INFECTIOUS DISEASES, 2006, 193 (08) :1098-1108
[7]   Control of cell morphogenesis in bacteria: Two distinct ways to make a rod-shaped cell [J].
Daniel, RA ;
Errington, J .
CELL, 2003, 113 (06) :767-776
[8]   Tertiary structure of Staphylococcus aureus cell wall murein [J].
Dmitriev, BA ;
Holst, O ;
Rietschel, ET ;
Ehlers, S .
JOURNAL OF BACTERIOLOGY, 2004, 186 (21) :7141-7148
[9]   Tertiary structure of bacterial murein: The scaffold model [J].
Dmitriev, BA ;
Toukach, FV ;
Schaper, KM ;
Holst, O ;
Rietschel, ET ;
Ehlers, S .
JOURNAL OF BACTERIOLOGY, 2003, 185 (11) :3458-3468
[10]   ULTRASTRUCTURAL STUDY OF REVERSION OF PROTOPLASTS OF BACILLUS LICHENIFORMIS TO BACILLI [J].
ELLIOTT, TSJ ;
WARD, JB ;
WYRICK, PB ;
ROGERS, HJ .
JOURNAL OF BACTERIOLOGY, 1975, 124 (02) :905-917