A note on the triangle inequality for the Jaccard distance

被引:132
作者
Kosub, Sven [1 ]
机构
[1] Univ Konstanz, Dept Comp & Informat Sci, Box 67, D-78459 Constance, Germany
关键词
Jaccard index; Set distance; Submodularity;
D O I
10.1016/j.patrec.2018.12.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Two simple proofs of the triangle inequality for the Jaccard distance in terms of nonnegative, monotone, submodular functions are given and discussed. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 38
页数:3
相关论文
共 15 条
  • [1] Charikar Moses S, 2002, P 34 ANN ACM S THEOR, P380
  • [2] Fujishige S, 2005, ANN DISCR MATH, V58, P1
  • [3] Measuring Distance Between Unordered Sets of Different Sizes
    Gardner, Andrew
    Kanno, Jinko
    Duncan, Christian A.
    Selmic, Rastko
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 137 - 143
  • [4] DISTANCE BETWEEN SETS
    GILBERT, G
    [J]. NATURE, 1972, 239 (5368) : 174 - &
  • [5] Gillenwater J., 2015, ADV NEURAL INFORM PR, V28, P3141
  • [6] Gower J. C., 2008, ENCY STAT SCI, V12, P7730
  • [7] Jaccard P., 1901, Bull Soc Vaud Sci Nat, V37, P547
  • [8] Kosters W.A., 2007, 27 SGAI INT C INN TE, P293
  • [9] DISTANCE BETWEEN SETS
    LEVANDOWSKY, M
    WINTER, D
    [J]. NATURE, 1971, 234 (5323) : 34 - +
  • [10] A proof of the triangle inequality for the Tanimoto distance
    Lipkus, AH
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 1999, 26 (1-3) : 263 - 265