Molecular insights into the mechanisms of HIV-1 reverse transcriptase resistance to nucleoside analogs

被引:7
作者
Carvalho, AP [1 ]
Fernandes, PA [1 ]
Ramos, MJ [1 ]
机构
[1] Univ Porto, Fac Ciencias, Requimte, P-4169007 Oporto, Portugal
关键词
HIV-1; reverse-transcriptase; NRTIs; resistance mutations;
D O I
10.2174/138955706776876276
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The causative agent of acquired immunodeficiency syndrome, HIV-1, depends on one of its enzymes, reverse transcriptase, to copy its single stranded RNA genome into a double stranded DNA nucleic acid suitable for integration in the host cell genome. In the last two decades, the advances in the knowledge of the kinetic mechanism of reverse transcription and in the determination of the crystallographic structures for the complexes of the enzyme with substrates and products were huge. However, all of this knowledge resulted in the design of RT inhibitors for which the virus, after a short period of exposure, becomes less susceptible, due to the development of resistance. The development of resistance is caused by the high frequency of viral mutation and the toxicity of those same drugs. Therefore, a closer look at all the available information might shed some light into this subject and help to develop new strategies to overcome the lack of long term clinical efficiency of these drugs. Here, we present a critical atomic level study of all the mutations that have been detected and reported so far, as a reaction of the enzyme to counteract the action of the inhibitors.
引用
收藏
页码:549 / 555
页数:7
相关论文
共 66 条
[1]   Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT):: Increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase [J].
Arion, D ;
Kaushik, N ;
McCormick, S ;
Borkow, G ;
Parniak, MA .
BIOCHEMISTRY, 1998, 37 (45) :15908-15917
[2]  
Balzarini J, 1999, BIOCHEM PHARMACOL, V58, P1
[3]  
BATTULA N, 1976, J BIOL CHEM, V251, P982
[4]   In vitro selection of mutations in the human immunodeficiency virus type 1 reverse transcriptase that decrease susceptibility to (-)-β-D-dioxolane-guanosine and suppress resistance to 3′-azido-3′-deoxythymidine [J].
Bazmi, HZ ;
Hammond, JL ;
Cavalcanti, SCH ;
Chu, CK ;
Schinazi, RF ;
Mellors, JW .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (07) :1783-1788
[5]   HIGH-LEVEL RESISTANCE TO (-) ENANTIOMERIC 2'-DEOXY-3'-THIACYTIDINE IN-VITRO IS DUE TO ONE AMINO-ACID SUBSTITUTION IN THE CATALYTIC SITE OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 REVERSE-TRANSCRIPTASE [J].
BOUCHER, CAB ;
CAMMACK, N ;
SCHIPPER, P ;
SCHUURMAN, R ;
ROUSE, P ;
WAINBERG, MA ;
CAMERON, JM .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1993, 37 (10) :2231-2234
[6]   Effects of the Δ67 complex of mutations in human immunodeficiency virus type 1 reverse transcriptase on nucleoside analog excision [J].
Boyer, PL ;
Imamichi, T ;
Sarafianos, SG ;
Arnold, E ;
Hughes, SH .
JOURNAL OF VIROLOGY, 2004, 78 (18) :9987-9997
[7]   Nucleoside analog resistance caused by insertions in the fingers of human immunodeficiency virus type 1 reverse transcriptase involves ATP-mediated excision [J].
Boyer, PL ;
Sarafianos, SG ;
Arnold, E ;
Hughes, SH .
JOURNAL OF VIROLOGY, 2002, 76 (18) :9143-9151
[8]   The M184V mutation reduces the selective excision of zidovudine 5′-monophosphate (AZTMP) by the reverse transcriptase of human immunodeficiency virus type 1 [J].
Boyer, PL ;
Sarafianos, SG ;
Arnold, E ;
Hughes, SH .
JOURNAL OF VIROLOGY, 2002, 76 (07) :3248-3256
[9]   Selective excision of AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase [J].
Boyer, PL ;
Sarafianos, SG ;
Arnold, E ;
Hughes, SH .
JOURNAL OF VIROLOGY, 2001, 75 (10) :4832-4842
[10]  
de Mendoza Carmen, 2002, AIDS Reviews, V4, P64