The HIV-1 gp41 N-terminal heptad repeat plays an essential role in membrane fusion

被引:55
作者
Sackett, K [1 ]
Shai, Y [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
关键词
D O I
10.1021/bi0255322
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
For many different enveloped viruses the crystal structure of the fusion protein core has been established. A striking conservation in the tertiary and quaternary arrangement of these core structures is repeatedly revealed among members of diverse families. It has been proposed that the primary role of the core involves structural rearrangements which facilitate apposition between viral and target cell membranes. Forming the internal trimeric coiled coil of the core, the N-terminal heptad repeat (NHR) of HIV-1 gp41 was suggested to have additional roles, due to its ability to bind biological membranes. The NHR is adjacent to the N-terminal hydrophobic fusion peptide (FP), which alone can fuse biological membranes. To investigate the role of the NHR in membrane fusion, we synthesized and functionally characterized HIV-1 gp41 peptides corresponding to the FP and NHR alone, as well as continuous peptides made of both FP and NHR (wild type and mutant). We show here that a consecutive, 70-residue peptide consisting of both the FP and NHR (gp41/1-70) has dramatic fusogenic properties. The effect of including the complete NHR, as compared to shorter 23-, 33-, or 52-residue N-terminal peptides, is illustrated by a leap in lipid mixing of phosphatidylcholine (PC) large unilamellar vesicles (LUV) and clearly delineates the synergistic role of the NHR in the fusion event. Furthermore, a mutation in the NHR that renders the virus noninfectious is reflected by a significant reduction in in vitro lipid mixing induced by the mutant, gp41/1-70 (I62D). Additional spectroscopic studies, characterizing membrane binding and apposition induced by the peptides, help to clarify the role of the NHR in membrane fusion.
引用
收藏
页码:4678 / 4685
页数:8
相关论文
共 81 条
[1]   CC CKRS: A RANTES, MIP-1 alpha, MIP-1 beta receptor as a fusion cofactor for macrophage-tropic HIV-1 [J].
Alkhatib, G ;
Combadiere, C ;
Broder, CC ;
Feng, Y ;
Kennedy, PE ;
Murphy, PM ;
Berger, EA .
SCIENCE, 1996, 272 (5270) :1955-1958
[2]   Membrane-induced step in the activation of Sendai virus fusion protein [J].
Ben-Efraim, I ;
Kliger, Y ;
Hermesh, C ;
Shai, Y .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (02) :609-625
[3]   Membrane fusion mediated by coiled coils: A hypothesis [J].
Bentz, J .
BIOPHYSICAL JOURNAL, 2000, 78 (02) :886-900
[4]   OLIGOMERIZATION OF THE HYDROPHOBIC HEPTAD REPEAT OF GP41 [J].
BERNSTEIN, HB ;
TUCKER, SP ;
KAR, SR ;
MCPHERSON, SA ;
MCPHERSON, DT ;
DUBAY, JW ;
LEBOWITZ, J ;
COMPANS, RW ;
HUNTER, E .
JOURNAL OF VIROLOGY, 1995, 69 (05) :2745-2750
[5]  
BLUMENTHAL R, 1987, CURR TOP MEMBR TRANS, V29, P203
[6]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43
[7]   HEPTAD REPEAT SEQUENCES ARE LOCATED ADJACENT TO HYDROPHOBIC REGIONS IN SEVERAL TYPES OF VIRUS FUSION GLYCOPROTEINS [J].
CHAMBERS, P ;
PRINGLE, CR ;
EASTON, AJ .
JOURNAL OF GENERAL VIROLOGY, 1990, 71 :3075-3080
[8]   Core structure of gp41 from the HIV envelope glycoprotein [J].
Chan, DC ;
Fass, D ;
Berger, JM ;
Kim, PS .
CELL, 1997, 89 (02) :263-273
[9]   The amino-terminal fusion domain peptide of human immunodeficiency virus type 1 gp41 inserts into the sodium dodecyl sulfate micelle primarily as helix with a conserved glycine at the micelle-water interface [J].
Chang, DK ;
Cheng, SF ;
Chien, WJ .
JOURNAL OF VIROLOGY, 1997, 71 (09) :6593-6602
[10]   FUNCTIONAL-ROLE OF THE ZIPPER MOTIF REGION OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 TRANSMEMBRANE PROTEIN GP41 [J].
CHEN, SSL .
JOURNAL OF VIROLOGY, 1994, 68 (03) :2002-2010