Low-field magnetic separation of monodisperse Fe3O4 nanocrystals

被引:1066
作者
Yavuz, Cafer T.
Mayo, J. T.
Yu, William W.
Prakash, Arjun
Falkner, Joshua C.
Yean, Sujin
Cong, Lili
Shipley, Heather J.
Kan, Amy
Tomson, Mason
Natelson, Douglas
Colvin, Vicki L.
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[3] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA
[4] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
关键词
D O I
10.1126/science.1131475
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic separations at very low magnetic field gradients (< 100 tesla per meter) can now be applied to diverse problems, such as point-of-use water purification and the simultaneous separation of complex mixtures. High - surface area and monodisperse magnetite (Fe3O4) nanocrystals (NCs) were shown to respond to low fields in a size-dependent fashion. The particles apparently do not act independently in the separation but rather reversibly aggregate through the resulting high-field gradients present at their surfaces. Using the high specific surface area of Fe3O4 NCs that were 12 nanometers in diameter, we reduced the mass of waste associated with arsenic removal from water by orders of magnitude. Additionally, the size dependence of magnetic separation permitted mixtures of 4- and 12-nanometer - sized Fe3O4 NCs to be separated by the application of different magnetic fields.
引用
收藏
页码:964 / 967
页数:4
相关论文
共 42 条
[1]   Nano-aggregates of hexacyanoferrate (II)-loaded magnetite for removal of cesium from radioactive wastes [J].
Ambashta, RD ;
Wattal, PK ;
Singh, S ;
Bahadur, D .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 267 (03) :335-340
[2]   Protein separations using colloidal magnetic nanoparticles [J].
Bucak, S ;
Jones, DA ;
Laibinis, PE ;
Hatton, TA .
BIOTECHNOLOGY PROGRESS, 2003, 19 (02) :477-484
[3]  
Butler R.F., 1992, Paleomagnetism: Magnetic Domains to Geologic Terranes
[4]   THEORETICAL SINGLE-DOMAIN GRAIN-SIZE RANGE IN MAGNETITE AND TITANOMAGNETITE [J].
BUTLER, RF ;
BANERJEE, SK .
JOURNAL OF GEOPHYSICAL RESEARCH, 1975, 80 (29) :4049-4058
[5]   Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy [J].
Butter, K ;
Bomans, PHH ;
Frederik, PM ;
Vroege, GJ ;
Philipse, AP .
NATURE MATERIALS, 2003, 2 (02) :88-91
[6]   Comparing recovering efficiency of immunomagnetic separation and centrifugation of mycobacteria in metalworking fluids [J].
Chang, SC ;
Anderson, TI ;
Bahrman, SE ;
Gruden, CL ;
Khijniak, AI ;
Adriaens, P .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2005, 32 (11-12) :629-638
[7]   Removal of arsenic from geothermal water by high gradient magnetic separation [J].
Chiba, A ;
Okada, H ;
Tada, T ;
Kudo, H ;
Nakazawa, H ;
Mitsuhashi, K ;
Ohara, T ;
Wada, H .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2002, 12 (01) :952-954
[8]   Nanolevel magnetic separation model considering flow limitations [J].
Cotten, GB ;
Eldredge, HB .
SEPARATION SCIENCE AND TECHNOLOGY, 2002, 37 (16) :3755-3779
[9]   Frequency-dependent susceptibility measurements of environmental materials [J].
Dearing, JA ;
Dann, RJL ;
Hay, K ;
Lees, JA ;
Loveland, PJ ;
Maher, BA ;
OGrady, K .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1996, 124 (01) :228-240
[10]   MAGNETIC SEPARATION IN WATER-POLLUTION CONTROL [J].
DELATOUR, C .
IEEE TRANSACTIONS ON MAGNETICS, 1973, MAG9 (03) :314-316