Recent studies have focused attention on the role of protein tyrosine kinases in vascular smooth muscle cell biology, but similar information regarding protein tyrosine phosphatases (PTP) is sparse. PTP-1B is a ubiquitous nonreceptor phosphatase with uncertain function and substrates that are mostly unidentified. We used antisense oligodeoxynucleotides (ODN) against PTP-1B to investigate the role of endogenous PTP-1B in motility of primary cultures of rat aortic smooth muscle cells (RASMC). Antisense ODN decreased PTP-1B protein levels and activity in a concentration-dependent fashion, whereas sense, scrambled, or three-base mismatch antisense ODN had little or no effect. Treatment of cells with antisense ODN, but not sense, scrambled, or three-base mismatch antisense ODN, enhanced cell motility and increased tyrosine phosphorylation levels of focal adhesion proteins paxillin, p130(cas), and focal adhesion kinase. Our findings indicate that PTP-1B is a negative regulator of RASMC motility via modulation of phosphotyrosine levels in several focal adhesion proteins and suggest the involvement of PTP-1B in events such as atherosclerosis and restenosis, which are associated with increased vascular smooth muscle cell motility.