LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form

被引:717
作者
Guerra, TM [1 ]
Vermeiren, L [1 ]
机构
[1] CNRS, LAMIH, UMR 8530, F-59313 Valenciennes 9, France
关键词
fuzzy models; nonquadratic stabilization; nonlinear control; Lyapunov function; linear matrix inequality (LMI);
D O I
10.1016/j.automatica.2003.12.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the stabilization analysis for a class of nonlinear systems that are represented by a Takagi and Sugeno (TS) discrete fuzzy model (Takagi and Sugeno IEEE Trans. Systems Man Cybern. 15(1)(1985)116). The main result given here concerns their stabilization using new control laws and new nonquadratic Lyapunov functions. New relaxed conditions and linear matrix inequality-based design are proposed that allow outperforming previous results found in the literature. Two examples are also provided to demonstrate the efficiency of the approaches. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:823 / 829
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 1999, THESIS LUND I TECHNO
[2]  
BLANCO Y, 2001, P ECC 2001
[3]  
Boyd S, 1994, STUDIES APPL MATH
[4]   A new discrete-time robust stability conditions [J].
de Oliveira, MC ;
Bernussou, J ;
Geromel, JC .
SYSTEMS & CONTROL LETTERS, 1999, 37 (04) :261-265
[5]  
FENG G, 2001, FUZZ IEEE 2001
[6]  
GUERRA TM, 2002, IPMU 2002
[7]  
GUERRA TM, 2001, WORKSH IFAC ADV FUZZ
[8]  
GUERRA TM, 2001, FUZZ IEEE 2001
[9]   A method of identifying influential data in fuzzy clustering [J].
Imai, H ;
Tanaka, A ;
Miyakoshi, M .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1998, 6 (01) :90-101
[10]   Piecewise quadratic stability of fuzzy systems [J].
Johansson, M ;
Rantzer, A ;
Årzén, KE .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (06) :713-722