Improved occupancy grids for map

被引:97
作者
Konolige, K
机构
[1] Artificial Intelligence Center, SRI International, Menlo Park, CA 94025
[2] Artif. Intell. Ctr. of SRI Intl., Stanford University
关键词
map-making; sensor fusion; occupancy grids;
D O I
10.1023/A:1008806422571
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Occupancy grids are a probabilistic method for fusing multiple sensor readings into surface maps of the environment. Although the underlying theory has been understood for many years, the intricacies of applying it to realtime sensor interpretation have been neglected. This paper analyzes how refined sensor models (including specularity models) and assumptions about independence are crucial issues for occupancy grid interpretation. Using this analysis, the MURIEL method for occupancy grid update is developed. Experiments show how it can dramatically improve the fidelity of occupancy grid map-making in specular and realtime environments.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 15 条
[1]  
[Anonymous], 1990, INT ROB SYST 90 NEW
[2]   THE VECTOR FIELD HISTOGRAM - FAST OBSTACLE AVOIDANCE FOR MOBILE ROBOTS [J].
BORENSTEIN, J ;
KOREN, Y .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1991, 7 (03) :278-288
[3]   MODELING A DYNAMIC ENVIRONMENT USING A BAYESIAN MULTIPLE HYPOTHESIS APPROACH [J].
COX, IJ ;
LEONARD, JJ .
ARTIFICIAL INTELLIGENCE, 1994, 66 (02) :311-344
[4]  
Crowley J. L., 1985, IEEE Journal of Robotics and Automation, VRA-1, P31, DOI 10.1109/JRA.1985.1087002
[5]  
CROWLEY JL, 1989, MAY P IEEE INT C ROB, P674
[6]  
DRUMHELLER M, 1985, 826 MIT
[7]  
ELFES A, 1992, MULTI SOURCE SPATIAL, P137
[8]  
Elfes A, 1990, 6 C UNC AI
[9]  
Elfes A. E., 1992, INT C ROB AUT
[10]  
KONOLIGE K, 1995, AI MAGAZINE SUM