Structure Sensitivity of the Electrochemical Reduction of Carbon Monoxide on Copper Single Crystals

被引:301
作者
Schouten, Klaas Jan P. [1 ]
Gallent, Elena Perez [1 ]
Koper, Marc T. M. [1 ]
机构
[1] Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands
来源
ACS CATALYSIS | 2013年 / 3卷 / 06期
关键词
carbon monoxide; carbon dioxide; copper electrodes; single crystals; structure sensitivity; Cu(100); ethylene; ELECTRODES; CO2; HYDROCARBONS;
D O I
10.1021/cs4002404
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The product selectivity in the electrochemical reduction of carbon dioxide and carbon monoxide strongly depends on the atomic configuration of the copper electrode surface. On Cu(111), methane formation is favored, whereas on Cu(100), ethylene formation is favored, with selective ethylene formation at low overpotentials. To distinguish the reactivity of (100) terraces vs (100) steps, we have studied carbon monoxide reduction on Cu(322), with the [5(111) x (100)] orientation, and Cu(911), with the [5(100) x (111)] orientation. Only on Cu(911) is the selective ethylene formation at low overpotentials observed, indicating that this reaction pathway occurs only on (100) terraces. We also show that the reduction of ethylene oxide to ethylene is significantly faster on Cu(100) compared with Cu(111), giving further evidence to the importance of the associated intermediate for ethylene formation. On Cu(110), the potential dependence of methane and ethylene formation is similar to Cu(111), and we have observed a primary alcohol among the products.
引用
收藏
页码:1292 / 1295
页数:4
相关论文
共 15 条
[1]  
Calle-Vallejo F., 2013, ANGEW CHEM IN PRESS
[2]   Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces [J].
Durand, William J. ;
Peterson, Andrew A. ;
Studt, Felix ;
Abild-Pedersen, Frank ;
Norskov, Jens K. .
SURFACE SCIENCE, 2011, 605 (15-16) :1354-1359
[3]   Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (04) :1255-1265
[4]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19
[5]   Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes [J].
Hori, Y ;
Takahashi, I ;
Koga, O ;
Hoshi, N .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2003, 199 (1-2) :39-47
[6]  
Hori Y, 2008, MOD ASP ELECTROCHEM, P89
[7]   ADSORPTION OF CO ACCOMPANIED WITH SIMULTANEOUS CHARGE-TRANSFER ON COPPER SINGLE-CRYSTAL ELECTRODES RELATED WITH ELECTROCHEMICAL REDUCTION OF CO2 TO HYDROCARBONS [J].
HORI, Y ;
WAKEBE, H ;
TSUKAMOTO, T ;
KOGA, O .
SURFACE SCIENCE, 1995, 335 (1-3) :258-263
[8]   PRODUCTION OF CO AND CH4 IN ELECTROCHEMICAL REDUCTION OF CO2 AT METAL-ELECTRODES IN AQUEOUS HYDROGENCARBONATE SOLUTION [J].
HORI, Y ;
KIKUCHI, K ;
SUZUKI, S .
CHEMISTRY LETTERS, 1985, (11) :1695-1698
[9]   Electrochemical reduction of CO at a copper electrode [J].
Hori, Y ;
Takahashi, R ;
Yoshinami, Y ;
Murata, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (36) :7075-7081
[10]   Structure sensitivity and nanoscale effects in electrocatalysis [J].
Koper, Marc T. M. .
NANOSCALE, 2011, 3 (05) :2054-2073