Function and evolution of grana

被引:88
作者
Mullineaux, CW [1 ]
机构
[1] Queen Mary Univ London, Sch Biol & Chem Sci, London E1 4NS, England
关键词
D O I
10.1016/j.tplants.2005.09.001
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Chloroplasts are descended from cyanobacteria, and they retain many features of the cyanobacterial photosynthetic apparatus. However, land-plant chloroplasts have a strikingly different thylakoid membrane organization to that of cyanobacteria. Usually the two photosystems are laterally segregated; Photosystem II is concentrated in complex stacked-membrane structures known as grana. The function of grana has long been debated. Recent studies on membrane organization in chloroplasts, cyanobacteria and purple bacteria now offer a new perspective. I argue that grana allow the presence of a large light-harvesting antenna for Photosystem II, without excessively restricting electron transport. Other organisms solve this problem in different ways. Land plants evolved from macroalgae that were adapted to high light conditions; they evolved grana as a new solution to the problem of efficient photosynthesis in shade.
引用
收藏
页码:521 / 525
页数:5
相关论文
共 40 条
[1]   A quantitative model of the domain structure of the photosynthetic membrane [J].
Albertsson, PÅ .
TRENDS IN PLANT SCIENCE, 2001, 6 (08) :349-354
[2]   HOW DOES PROTEIN-PHOSPHORYLATION REGULATE PHOTOSYNTHESIS [J].
ALLEN, JF .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (01) :12-17
[3]   Molecular recognition in thylakoid structure and function [J].
Allen, JF ;
Forsberg, J .
TRENDS IN PLANT SCIENCE, 2001, 6 (07) :317-326
[5]   EFFECTS OF CATIONS UPON CHLOROPLAST MEMBRANE SUBUNIT INTERACTIONS AND EXCITATION-ENERGY DISTRIBUTION [J].
ARNTZEN, CJ ;
DITTO, CL .
BIOCHIMICA ET BIOPHYSICA ACTA, 1976, 449 (02) :259-274
[6]   The native architecture of a photosynthetic membrane [J].
Bahatyrova, S ;
Frese, RN ;
Siebert, CA ;
Olsen, JD ;
van der Werf, KO ;
van Grondelle, R ;
Niederman, RA ;
Bullough, PA ;
Otto, C ;
Hunter, CN .
NATURE, 2004, 430 (7003) :1058-1062
[7]   The occurrence of rapidly reversible non-photochemical quenching of chlorophyll a fluorescence in cyanobacteria [J].
Bailey, S ;
Mann, NH ;
Robinson, C ;
Scanlan, DJ .
FEBS LETTERS, 2005, 579 (01) :275-280
[8]   TOO MUCH OF A GOOD THING - LIGHT CAN BE BAD FOR PHOTOSYNTHESIS [J].
BARBER, J ;
ANDERSSON, B .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (02) :61-66
[9]   INFLUENCE OF SURFACE-CHARGES ON THYLAKOID STRUCTURE AND FUNCTION [J].
BARBER, J .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1982, 33 :261-295
[10]   Crystal structure of plant photosystem I [J].
Ben-Shem, A ;
Frolow, F ;
Nelson, N .
NATURE, 2003, 426 (6967) :630-635