Hausdorff moments, hardy spaces, and power series

被引:4
作者
De Micheli, E
Viano, GA
机构
[1] CNR, Ist Cibernet & Biofis, I-16149 Genoa, Italy
[2] Univ Genoa, Ist Nazl Fis Nucl, Dipartimento Fis, Sez Genova, I-16146 Genoa, Italy
关键词
D O I
10.1006/jmaa.1999.6367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider power and trigonometric series whose coefficients are supposed to satisfy the Hausdorff conditions, which play a relevant role in the moment problem theory. We prove that these series converge to functions analytic in cut domains. We are then able to reconstruct the jump functions across the cuts from the coefficients of the series expansions by the use of the Pollaczek polynomials. We can thus furnish a solution for a class of Cauchy integral equations. (C) 1999 Academic Press.
引用
收藏
页码:265 / 286
页数:22
相关论文
共 20 条
  • [1] [Anonymous], 1923, LECT CAUCHYS PROBLEM
  • [2] [Anonymous], 1972, LAPLACE TRANSFORM
  • [3] Bieberbach L., 1955, ANAL FORTZETZUNG, DOI [10.1002/zamm19550350918, DOI 10.1002/ZAMM19550350918]
  • [4] Boas R. P., 1954, PURE APPL MATH, V5
  • [5] Connection between the harmonic analysis on the sphere and the harmonic analysis on the one-sheeted hyperboloid: An analytic continuation viewpoint .3.
    Bros, J
    Viano, GA
    [J]. FORUM MATHEMATICUM, 1997, 9 (02) : 165 - 191
  • [6] Bros J, 1996, ANN I H POINCARE-PHY, V64, P495
  • [7] Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
  • [8] FARAUT J, 1986, J MATH PHYS, V27, P927
  • [9] FARAUT J, 1981, SEMINAIRE ANAL HARMO
  • [10] Hoffman K., 1962, BANACH SPACES ANAL F