Mixed finite element methods for a dynamical Ginzburg-Landau model in superconductivity

被引:29
作者
Chen, ZM
机构
[1] Institute of Mathematics, Academia Sinica
关键词
Mathematics Subject Classification (1991):65N30, 82D55;
D O I
10.1007/s002110050266
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the numerical solutions of the nonlinear time-dependent Ginzburg-Landau model which describes the phase transitions taking place in superconducting films,We propose a semi-implicit finite element scheme which is based on a Linear finite element approximation of the order parameter psi and a mixed finite element discretization for the equation involving the magnetic potential A. The error estimates of the scheme are derived.
引用
收藏
页码:323 / 353
页数:31
相关论文
共 24 条
[1]  
[Anonymous], RAIRO RAN R
[2]  
ARNOLD DN, 1985, RAIRO-MATH MODEL NUM, V19, P7
[3]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[4]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[5]   MACROSCOPIC MODELS FOR SUPERCONDUCTIVITY [J].
CHAPMAN, SJ ;
HOWISON, SD ;
OCKENDON, JR .
SIAM REVIEW, 1992, 34 (04) :529-560
[6]  
CHEN Z, 1994, NOTES NUMERICAL FLUI, V48, P31
[7]  
CHEN Z, 1994, IN PRESS JUSTIFICATI
[8]  
CHEN Z, 1994, P C SCI ENG COMP YOU, P119
[9]  
Chen Z., 1995, Adv Math Sci Appl, V5, P363
[10]   ON A NONSTATIONARY GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL [J].
CHEN, ZM ;
HOFFMANN, KH ;
LIANG, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (12) :855-875