The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering

被引:44
作者
Ishikawa, Masaki [1 ]
Kiba, Takatoshi [1 ]
Chua, Nam-Hai [1 ]
机构
[1] Rockefeller Univ, Plant Mol Biol Lab, New York, NY 10021 USA
关键词
Arabidopsis; SPA1; phytochrome A; circadian rhythm; flowering time; photoperiod pathway;
D O I
10.1111/j.1365-313X.2006.02737.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis phytochrome A (phyA) regulates not only seed germination and seedling de-etiolation but also circadian rhythms and flowering time in adult plants. The SUPPRESSOR OF PHYA-105 (SPA1) acts as a negative regulator of phyA-mediated de-etiolation of young seedlings, but its roles in adult plants have not yet been described. Here, we show that SPA1 is involved in regulating circadian rhythms and flowering time in plants. Under constant light, the abundance of SPA1 protein exhibited circadian regulation, whereas under constant darkness, SPA1 protein levels remained unchanged. These results indicate that the SPA1 protein is controlled by the circadian clock and light signals. In addition, the spa1-3 mutation slightly shortened the circadian period of CCA1, TOC1/PRR1 and SPA1 transcript accumulation under constant light. Phenotypic analysis showed that the spa1-3 mutant flowers early under short-day (SD) but not long-day (LD) conditions. Consistent with this finding, transcripts encoding flowering locus T (FT), which promotes flowering, increased in spa1-3 under only SD conditions, although the CONSTANS (CO) transcript level was not affected under either SD nor LD conditions. Our results indicate that SPA1 not only negatively controls phyA-mediated signaling in seedlings, but also regulates circadian rhythms and flowering time in plants.
引用
收藏
页码:736 / 746
页数:11
相关论文
共 48 条
[1]   Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J].
Alabadí, D ;
Oyama, T ;
Yanovsky, MJ ;
Harmon, FG ;
Más, P ;
Kay, SA .
SCIENCE, 2001, 293 (5531) :880-883
[2]   FLOWERING RESPONSES TO ALTERED EXPRESSION OF PHYTOCHROME IN MUTANTS AND TRANSGENIC LINES OF ARABIDOPSIS-THALIANA (L) HEYNH [J].
BAGNALL, DJ ;
KING, RW ;
WHITELAM, GC ;
BOYLAN, MT ;
WAGNER, D ;
QUAIL, PH .
PLANT PHYSIOLOGY, 1995, 108 (04) :1495-1503
[3]   Light, phytochrome signalling and photomorphogenesis in Arabidopsis [J].
Casal, JJ ;
Luccioni, LG ;
Oliverio, KA ;
Boccalandro, HE .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2003, 2 (06) :625-636
[4]   Regulation of flowering time by light quality [J].
Cerdán, PD ;
Chory, J .
NATURE, 2003, 423 (6942) :881-885
[5]   The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana [J].
Doyle, MR ;
Davis, SJ ;
Bastow, RM ;
McWatters, HG ;
Kozma-Bognár, L ;
Nagy, F ;
Millar, AJ ;
Amasino, RM .
NATURE, 2002, 419 (6902) :74-77
[6]   The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1 [J].
Duek, PD ;
Elmer, MV ;
van Oosten, VR ;
Fankhauser, C .
CURRENT BIOLOGY, 2004, 14 (24) :2296-2301
[7]   Molecular bases for circadian clocks [J].
Dunlap, JC .
CELL, 1999, 96 (02) :271-290
[8]   A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2 [J].
El-Assal, SED ;
Alonso-Blanco, C ;
Peeters, AJM ;
Raz, V ;
Koornneef, M .
NATURE GENETICS, 2001, 29 (04) :435-440
[9]   GIGANTEA:: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains [J].
Fowler, S ;
Lee, K ;
Onouchi, H ;
Samach, A ;
Richardson, K ;
Coupland, G ;
Putterill, J .
EMBO JOURNAL, 1999, 18 (17) :4679-4688
[10]   Regulations of flowering time by Arabidopsis photoreceptors [J].
Guo, HW ;
Yang, WY ;
Mockler, TC ;
Lin, CT .
SCIENCE, 1998, 279 (5355) :1360-1363