The Fe/O elemental abundance ratio in the solar wind as observed with SOHOCELIAS CTOF

被引:29
作者
Aellig, MR
Hefti, S
Grünwaldt, H
Bochsler, P
Wurz, P
Ipavich, FM
Hovestadt, D
机构
[1] MIT, Ctr Space Res, Cambridge, MA 02139 USA
[2] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland
[3] Max Planck Inst Aeron, D-37189 Katlenburg Lindau, Germany
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[5] Univ Maryland, Dept Phys & Astron, College Pk, MD 20742 USA
[6] Max Planck Inst Extraterr Phys, D-85740 Garching, Germany
关键词
D O I
10.1029/1999JA900309
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using data of the Charge Time-of-Flight (CTOF) mass spectrometer of the Charge, Element, and Isotope Analysis System (CELIAS) on board the Solar and Heliospheric Observatory (SOHO) from similar to 80 days of observation around solar minimum we derive a value for the Fe/O abundance ratio for the inecliptic solar wind of 0.11 +/- 0.03. Since Fe has a low first ionization-potential (FIP) and O is a high-FIP element, their relative abundance is diagnostic for the FIP fractionation process. The unprecedented time resolution of the CELIAS CTOF sensor allows a fine-scaled study of the Fe/O ratio as a function of the solar wind bulk speed. On average, the Fe/O abundance ratio shows a continuous decrease by a factor of 2 with increasing solar wind speed between 350 and 500 km/s. This corresponds to the well-known FIP effect dependence. Our value at similar to 500 km/s agrees with the previously observed Fe/O ratio in the fast solar wind emerging from polar coronal. holes whereas the value for speeds below 350 km/s is consistent with a remote abundance determination in the leg of a coronal streamer. The variability of the Fe/O abundance ratio is much larger in the slow than in the fast solar wind.
引用
收藏
页码:24769 / 24780
页数:12
相关论文
共 22 条
[1]   Iron freeze-in temperatures measured by SOHO/CELIAS/CTOF [J].
Aellig, MR ;
Grunwaldt, H ;
Bochsler, P ;
Wurz, P ;
Hefti, S ;
Kallenbach, R ;
Ipavich, FM ;
Axford, WI ;
Balsiger, I ;
Burgi, A ;
Coplan, MA ;
Galvin, AB ;
Geiss, J ;
Gliem, F ;
Gloeckler, G ;
Hilchenbach, M ;
Hovestadt, D ;
Hsieh, EC ;
Klecker, B ;
Lee, MA ;
Livi, S ;
Managadze, GG ;
Marsch, E ;
Mobius, E ;
Neugebauer, M ;
Reiche, KU ;
Scholer, M ;
Verigin, MI ;
Wilken, B .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A8) :17215-17222
[2]  
AELLIG MR, 1998, THESIS U BERN
[3]   ABUNDANCES OF THE ELEMENTS - METEORITIC AND SOLAR [J].
ANDERS, E ;
GREVESSE, N .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1989, 53 (01) :197-214
[4]  
Arnaud M., 1985, Astronomy & Astrophysics Supplement Series, V60, P425
[5]   ABUNDANCES OF CARBON, OXYGEN, AND NEON IN THE SOLAR-WIND DURING THE PERIOD FROM AUGUST 1978 TO JUNE 1982 [J].
BOCHSLER, P ;
GEISS, J ;
KUNZ, S .
SOLAR PHYSICS, 1986, 103 (01) :177-201
[6]  
BOCHSLER P, 1984, THESIS U BERN
[7]   THE SOUTHERN HIGH-SPEED STREAM - RESULTS FROM THE SWICS INSTRUMENT ON ULYSSES [J].
GEISS, J ;
GLOECKLER, G ;
VONSTEIGER, R ;
BALSIGER, H ;
FISK, LA ;
GALVIN, AB ;
IPAVICH, FM ;
LIVI, S ;
MCKENZIE, JF ;
OGILVIE, KW ;
WILKEN, B .
SCIENCE, 1995, 268 (5213) :1033-1036
[8]  
GEISS J, 1992, COSPAR COLL, V3, P341
[9]  
GEISS J, 1986, SUN HELIOSPHERE 3 DI, P173
[10]  
HANNAFORD P, 1992, ASTRON ASTROPHYS, V259, P301