Fully Automated Versus Standard Tracking of Left Ventricular Ejection Fraction and Longitudinal Strain The FAST-EFs Multicenter Study

被引:172
作者
Knackstedt, Christian [1 ]
Bekkers, Sebastiaan C. A. M. [1 ]
Schummers, Georg [2 ]
Schreckenberg, Marcus [2 ]
Muraru, Denisa [3 ]
Badano, Luigi P. [3 ]
Franke, Andreas [4 ]
Bavishi, Chirag [5 ]
Omar, Alaa Mabrouk Salem [5 ]
Sengupta, Partho P. [5 ]
机构
[1] Maastricht Univ, Med Ctr, Dept Cardiol, Maastricht, Netherlands
[2] TomTec Imaging Syst GmbH, Unterschleissheim, Germany
[3] Univ Padua, Dept Cardiac Thorac & Vasc Sci, Padua, Italy
[4] KRH Klinikum Siloah, Dept Cardiol, Hannover, Germany
[5] Mt Sinai Sch Med, Marie Josee & Henry R Kravis Ctr Cardiovasc Hlth, Zena & Michael A Wiener Cardiovasc Inst, New York, NY 10029 USA
关键词
agreement; automated function; echocardiography; observer variation; software; AMERICAN-SOCIETY; ECHOCARDIOGRAPHY; TIME; ASSOCIATION; VARIABILITY; VALIDATION; RECOMMENDATIONS; FEASIBILITY; PARAMETERS; MORTALITY;
D O I
10.1016/j.jacc.2015.07.052
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Echocardiographic determination of ejection fraction (EF) by manual tracing of endocardial borders is time consuming and operator dependent, whereas visual assessment is inherently subjective. OBJECTIVES This study tested the hypothesis that a novel, fully automated software using machine learning-enabled image analysis will provide rapid, reproducible measurements of left ventricular volumes and EF, as well as average biplane longitudinal strain (LS). METHODS For a total of 255 patients in sinus rhythm, apical 4- and 2-chamber views were collected from 4 centers that assessed EF using both visual estimation and manual tracing (biplane Simpson's method). In addition, datasets were saved in a centralized database, and machine learning-enabled software (AutoLV, TomTec-Arena 1.2, TomTec Imaging Systems, Unterschleissheim, Germany) was applied for fully automated EF and LS measurements. A reference center reanalyzed all datasets (by visual estimation and manual tracking), along with manual LS determinations. RESULTS AutoLV measurements were feasible in 98% of studies, and the average analysis time was 8 +/- 1 s/patient. Interclass correlation coefficients and Bland-Altman analysis revealed good agreements among automated EF, local center manual tracking, and reference center manual tracking, but not for visual EF assessments. Similarly, automated and manual LS measurements obtained at the reference center showed good agreement. Intraobserver variability was higher for visual EF than for manual EF or manual LS, whereas interobserver variability was higher for both visual and manual EF, but not different for LS. Automated EF and LS had no variability. CONCLUSIONS Fully automated analysis of echocardiography images provides rapid and reproducible assessment of left ventricular EF and LS. (C) 2015 by the American College of Cardiology Foundation.
引用
收藏
页码:1456 / 1466
页数:11
相关论文
共 45 条
[1]   VISUAL ESTIMATION OF EJECTION FRACTION BY 2-DIMENSIONAL ECHOCARDIOGRAPHY - THE LEARNING-CURVE [J].
AKINBOBOYE, O ;
SUMNER, J ;
GOPAL, A ;
KING, D ;
SHEN, ZG ;
BARDFELD, P ;
BLANZ, L ;
BROWN, EJ .
CLINICAL CARDIOLOGY, 1995, 18 (12) :726-729
[2]   Quantification of left ventricular volume and global function using a fast automated segmentation tool: validation in a clinical setting [J].
Barbosa, Daniel ;
Heyde, Brecht ;
Dietenbeck, Thomas ;
Houle, Helene ;
Friboulet, Denis ;
Bernard, Olivier ;
D'hooge, Jan .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2013, 29 (02) :309-316
[3]   FAST AND FULLY AUTOMATIC 3-D ECHOCARDIOGRAPHIC SEGMENTATION USING B-SPLINE EXPLICIT ACTIVE SURFACES: FEASIBILITY STUDY AND VALIDATION IN A CLINICAL SETTING [J].
Barbosa, Daniel ;
Dietenbeck, Thomas ;
Heyde, Brecht ;
Houle, Helene ;
Friboulet, Denis ;
D'hooge, Jan ;
Bernard, Olivier .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2013, 39 (01) :89-101
[4]   B-Spline Explicit Active Surfaces: An Efficient Framework for Real-Time 3-D Region-Based Segmentation [J].
Barbosa, Daniel ;
Dietenbeck, Thomas ;
Schaerer, Joel ;
D'hooge, Jan ;
Friboulet, Denis ;
Bernard, Olivier .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (01) :241-251
[5]   Automated function imaging: a new operator-independent strain method for assessing left ventricular function [J].
Belghiti, H. ;
Brette, S. ;
Lafitte, S. ;
Reant, P. ;
Picard, F. ;
Serri, K. ;
Lafitte, M. ;
Courregelongue, M. ;
Dos Santos, P. ;
Douard, H. ;
Roudaut, R. ;
DeMaria, A. .
ARCHIVES OF CARDIOVASCULAR DISEASES, 2008, 101 (03) :163-169
[6]   Longitudinal Strain Is a Marker of Microvascular Obstruction and Infarct Size in Patients with Acute ST-Segment Elevation Myocardial Infarction [J].
Biere, Loic ;
Donal, Erwan ;
Terrien, Gwenola ;
Kervio, Gaelle ;
Willoteaux, Serge ;
Furber, Alain ;
Prunier, Fabrice .
PLOS ONE, 2014, 9 (01)
[7]  
Bishop Christopher, 2006, Pattern Recognition and Machine Learning, DOI 10.1117/1.2819119
[8]   Use of an automatic application for wall motion classification based on longitudinal strain: is it affected by operator expertise in echocardiography? A multicentre study by the Israeli Echocardiography Research Group [J].
Blondheim, David S. ;
Friedman, Zvi ;
Lysyansky, Peter ;
Kuperstein, Rafael ;
Hay, Ilan ;
Feinberg, Micha S. ;
Beeri, Ronen ;
Vaturi, Mordehay ;
Sagie, Alik ;
Shimoni, Sarah ;
Fehske, Wolfgang ;
Deutsch, Lisa ;
Leitman, Marina ;
Gilon, Dan ;
Agmon, Yoram ;
Tsadok, Yossi ;
Rosenmann, David ;
Liel-Cohen, Noah .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2012, 13 (03) :257-262
[9]   A novel two-dimensional echocardinarraphic image analysis system using artificial intelligence-learned pattern recognition for rapid automated ejection fraction [J].
Cannesson, Maxime ;
Tanabe, Masaki ;
Suffoletto, Matthew S. ;
McNamara, Dennis M. ;
Madan, Shobhit ;
Lacomis, Joan M. ;
Gorcsan, John, III .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2007, 49 (02) :217-226
[10]   Usefulness of Global Left Ventricular Longitudinal Strain for Risk Stratification in Low Ejection Fraction, Low-Gradient Aortic Stenosis Results From the Multicenter True or Pseudo-Severe Aortic Stenosis Study [J].
Dahou, Abdellaziz ;
Bartko, Philipp Emanuel ;
Capoulade, Romain ;
Clavel, Marie-Annick ;
Mundigler, Gerald ;
Grondin, Samuel Larue ;
Bergler-Klein, Jutta ;
Burwash, Ian ;
Dumesnil, Jean G. ;
Senechal, Mario ;
O'Connor, Kim ;
Baumgartner, Helmut ;
Pibarot, Philippe .
CIRCULATION-CARDIOVASCULAR IMAGING, 2015, 8 (03)