Principals of neovascularization for tissue engineering

被引:323
作者
Nomi, Masashi
Atala, Anthony
De Coppi, Paolo
Soker, Shay [1 ]
机构
[1] Childrens Hosp, Dept Urol, Lab Cellular Therapeut & Tissue Engn, 300 Longwood Ave, Boston, MA 02115 USA
关键词
Angiogenesis; Gene therapy; Endothelial cells; VEGF; bFGF;
D O I
10.1016/S0098-2997(02)00008-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The goals in tissue engineering include the replacement of damaged, injured or missing body tissues with biological compatible substitutes such as bioengineered tissues. However, due to an initial mass loss after implantation, improved vascularization of the regenerated tissue is essential. Recent advances in understanding the process of blood vessel growth has offered significant tools for therapeutic neovascularization. Several angiogenic growth factors including vascular endothelial cell growth factor (VEGF) and basic fibroblast growth factor (bEGF) were used for vascularization of ischemic tissues. Three approaches have been used for vascularization of bioengineered tissue: incorporation of angiogenic factors in the bioengineered tissue, seeding endothelial cells with other cell types and prevascularization of matrices prior to cell seeding. This paper reviews the process of blood vessel growth and tissue vascularization, and discuss strategies for efficient vascularization of engineered tissues. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:463 / 483
页数:21
相关论文
共 133 条
[1]   NUCLEOTIDE-SEQUENCE OF A BOVINE CLONE ENCODING THE ANGIOGENIC PROTEIN, BASIC FIBROBLAST GROWTH-FACTOR [J].
ABRAHAM, JA ;
MERGIA, A ;
WHANG, JL ;
TUMOLO, A ;
FRIEDMAN, J ;
HJERRILD, KA ;
GOSPODAROWICZ, D ;
FIDDES, JC .
SCIENCE, 1986, 233 (4763) :545-548
[2]   INCREASED VASCULAR ENDOTHELIAL GROWTH-FACTOR LEVELS IN THE VITREOUS OF EYES WITH PROLIFERATIVE DIABETIC-RETINOPATHY [J].
ADAMIS, AP ;
MILLER, JW ;
BERNAL, MT ;
DAMICO, DJ ;
FOLKMAN, J ;
YEO, TK ;
YEO, KT .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 1994, 118 (04) :445-450
[3]   Establishment of heterotropic liver tissue mass with direct link to the host liver following implantation of hepatocytes transfected with vascular endothelial growth factor gene in mice [J].
Ajioka, I ;
Nishio, R ;
Ikekita, M ;
Akaike, T ;
Sasaki, M ;
Enami, J ;
Watanabe, Y .
TISSUE ENGINEERING, 2001, 7 (03) :335-344
[4]   Accelerated restitution of endothelial integrity and endothelium-dependent function after phVEGF(165) gene transfer [J].
Asahara, T ;
Chen, DH ;
Tsurumi, Y ;
Kearney, M ;
Rossow, S ;
Passeri, J ;
Symes, JF ;
Isner, JM .
CIRCULATION, 1996, 94 (12) :3291-3302
[5]   Isolation of putative progenitor endothelial cells for angiogenesis [J].
Asahara, T ;
Murohara, T ;
Sullivan, A ;
Silver, M ;
vanderZee, R ;
Li, T ;
Witzenbichler, B ;
Schatteman, G ;
Isner, JM .
SCIENCE, 1997, 275 (5302) :964-967
[6]   Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization [J].
Asahara, T ;
Masuda, H ;
Takahashi, T ;
Kalka, C ;
Pastore, C ;
Silver, M ;
Kearne, M ;
Magner, M ;
Isner, JM .
CIRCULATION RESEARCH, 1999, 85 (03) :221-228
[7]   VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells [J].
Asahara, T ;
Takahashi, T ;
Masuda, H ;
Kalka, C ;
Chen, DH ;
Iwaguro, H ;
Inai, Y ;
Silver, M ;
Isner, JM .
EMBO JOURNAL, 1999, 18 (14) :3964-3972
[8]  
Atala A, 2000, WORLD J UROL, V18, P1, DOI 10.1007/s003450050001
[9]   ENHANCED ANGIOGENESIS AND GROWTH OF COLLATERALS BY INVIVO ADMINISTRATION OF RECOMBINANT BASIC FIBROBLAST GROWTH-FACTOR IN A RABBIT MODEL OF ACUTE LOWER-LIMB ISCHEMIA - DOSE-RESPONSE EFFECT OF BASIC FIBROBLAST GROWTH-FACTOR [J].
BAFFOUR, R ;
BERMAN, J ;
GARB, JL ;
RHEE, SW ;
KAUFMAN, J ;
FRIEDMANN, P .
JOURNAL OF VASCULAR SURGERY, 1992, 16 (02) :181-191
[10]   THE FGF FAMILY OF GROWTH-FACTORS AND ONCOGENES [J].
BASILICO, C ;
MOSCATELLI, D .
ADVANCES IN CANCER RESEARCH, 1992, 59 :115-165