Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength

被引:407
作者
De Greve, Kristiaan [1 ]
Yu, Leo [1 ]
McMahon, Peter L. [1 ]
Pelc, Jason S. [1 ]
Natarajan, Chandra M. [1 ,2 ,3 ]
Kim, Na Young [1 ]
Abe, Eisuke [1 ,4 ]
Maier, Sebastian [5 ]
Schneider, Christian [5 ]
Kamp, Martin [5 ]
Hoefling, Sven [1 ,5 ]
Hadfield, Robert H. [2 ,3 ]
Forchel, Alfred [5 ]
Fejer, M. M. [1 ]
Yamamoto, Yoshihisa [1 ,4 ]
机构
[1] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA
[2] Heriot Watt Univ, Scottish Univ Phys Alliance, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Natl Inst Informat, Chiyoda Ku, Tokyo 1018403, Japan
[5] Univ Wurzburg, Wilhelm Conrad Rontgen Res Ctr Complex Mat Syst, Inst Phys, D-97074 Wurzburg, Germany
基金
英国工程与自然科学研究理事会;
关键词
SINGLE-PHOTON; ATOMIC ENSEMBLES; COMMUNICATION; EMISSION; DISTANCE; DEVICE; CAVITY;
D O I
10.1038/nature11577
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit(1-5). Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation(6,7) and photon emission(8,9), but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement(10). Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates(11,12), the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.
引用
收藏
页码:421 / +
页数:6
相关论文
共 29 条
[1]   Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots -: art. no. 195315 [J].
Bayer, M ;
Ortner, G ;
Stern, O ;
Kuther, A ;
Gorbunov, AA ;
Forchel, A ;
Hawrylak, P ;
Fafard, S ;
Hinzer, K ;
Reinecke, TL ;
Walck, SN ;
Reithmaier, JP ;
Klopf, F ;
Schäfer, F .
PHYSICAL REVIEW B, 2002, 65 (19) :1953151-19531523
[2]   Observation of entanglement between a single trapped atom and a single photon [J].
Blinov, BB ;
Moehring, DL ;
Duan, LM ;
Monroe, C .
NATURE, 2004, 428 (6979) :153-157
[3]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[4]   Measurement-induced entanglement for excitation stored in remote atomic ensembles [J].
Chou, CW ;
de Riedmatten, H ;
Felinto, D ;
Polyakov, SV ;
van Enk, SJ ;
Kimble, HJ .
NATURE, 2005, 438 (7069) :828-832
[5]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[6]   Long-distance quantum communication with atomic ensembles and linear optics [J].
Duan, LM ;
Lukin, MD ;
Cirac, JI ;
Zoller, P .
NATURE, 2001, 414 (6862) :413-418
[7]  
Faraon A, 2011, NAT PHOTONICS, V5, P301, DOI [10.1038/NPHOTON.2011.52, 10.1038/nphoton.2011.52]
[8]   Ultrafast optical control of entanglement between two quantum-dot spins [J].
Kim, Danny ;
Carter, Samuel G. ;
Greilich, Alex ;
Bracker, Allan S. ;
Gammon, Daniel .
NATURE PHYSICS, 2011, 7 (03) :223-229
[9]   The quantum internet [J].
Kimble, H. J. .
NATURE, 2008, 453 (7198) :1023-1030
[10]   A quantum dot single-photon turnstile device [J].
Michler, P ;
Kiraz, A ;
Becher, C ;
Schoenfeld, WV ;
Petroff, PM ;
Zhang, LD ;
Hu, E ;
Imamoglu, A .
SCIENCE, 2000, 290 (5500) :2282-2285