The structure of FADD and its mode of interaction with procaspase-8

被引:162
作者
Carrington, Paul E. [1 ]
Sandu, Cristinel [1 ]
Wei, Yufeng [1 ]
Hill, Justine M. [1 ]
Morisawa, Gaku [1 ]
Huang, Ted [1 ]
Gavathiotis, Evridipis [1 ]
Wei, Yu [1 ]
Werner, Milton H. [1 ]
机构
[1] Rockefeller Univ, Mol Biophys Lab, New York, NY 10021 USA
关键词
D O I
10.1016/j.molcel.2006.04.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The structure of FADD has been solved in solution, revealing that the death effector domain (DIED) and death domain (DD) are aligned with one another in an orthogonal, tail-to-tail fashion. Mutagenesis of FADD and functional reconstitution with its binding partners define the interaction with the intracellular domain of CD95 and the prodomain of procaspase-8 and reveal a self-association surface necessary to form a productive complex with an activated "death receptor." The identification of a procaspase-specific binding surface on the FADD DED suggests a preferential interaction with one, but not both, of the DEDs of procaspase-8 in a perpendicular arrangement. FADD self-association is mediated by a "hydrophobic patch" in the vicinity of F25 in the DIED. The structure of FADD and its functional characterization, therefore, illustrate the architecture of key components in the death-inducing signaling complex.
引用
收藏
页码:599 / 610
页数:12
相关论文
共 51 条
[1]   Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings [J].
Al-Hashimi, HM ;
Valafar, H ;
Terrell, M ;
Zartler, ER ;
Eidsness, MK ;
Prestegard, JH .
JOURNAL OF MAGNETIC RESONANCE, 2000, 143 (02) :402-406
[2]   Death receptors: Signaling and modulation [J].
Ashkenazi, A ;
Dixit, VM .
SCIENCE, 1998, 281 (5381) :1305-1308
[3]   Fas- and tumor necrosis factor-mediated apoptosis uses the same binding surface of FADD to trigger signal transduction - A typical model for convergent signal transduction [J].
Bang, S ;
Jeong, EJ ;
Kim, IK ;
Jung, YK ;
Kim, KS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (46) :36217-36222
[4]   Dipolar couplings in macromolecular structure determination [J].
Bax, A ;
Kontaxis, G ;
Tjandra, N .
NUCLEAR MAGNETIC RESONANCE OF BIOLOGICAL MACROMOLECULES, PT B, 2001, 339 :127-174
[5]   The three-dimensional solution structure and dynamic properties of the human FADD death domain [J].
Berglund, H ;
Olerenshaw, D ;
Sankar, A ;
Federwisch, M ;
McDonald, NQ ;
Driscoll, PC .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 302 (01) :171-188
[6]   A unified model for apical caspase activation [J].
Boatright, KM ;
Renatus, M ;
Scott, FL ;
Sperandio, S ;
Shin, H ;
Pedersen, IM ;
Ricci, JE ;
Edris, WA ;
Sutherlin, DP ;
Green, DR ;
Salvesen, GS .
MOLECULAR CELL, 2003, 11 (02) :529-541
[7]   A NOVEL PROTEIN THAT INTERACTS WITH THE DEATH DOMAIN OF FAS/APO1 CONTAINS A SEQUENCE MOTIF RELATED TO THE DEATH DOMAIN [J].
BOLDIN, MP ;
VARFOLOMEEV, EE ;
PANCER, Z ;
METT, IL ;
CAMONIS, JH ;
WALLACH, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (14) :7795-7798
[8]   Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death [J].
Boldin, MP ;
Goncharov, TM ;
Goltsev, YV ;
Wallach, D .
CELL, 1996, 85 (06) :803-815
[9]   Rapid identification of medium- to large-scale interdomain motion in modular proteins using dipolar couplings [J].
Braddock, DT ;
Cai, ML ;
Baber, JL ;
Huang, Y ;
Clore, GM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (35) :8634-8635
[10]   FADD, A NOVEL DEATH DOMAIN-CONTAINING PROTEIN, INTERACTS WITH THE DEATH DOMAIN OF FAS AND INITIATES APOPTOSIS [J].
CHINNAIYAN, AM ;
OROURKE, K ;
TEWARI, M ;
DIXIT, VM .
CELL, 1995, 81 (04) :505-512