Metabolic engineering of D-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid

被引:90
作者
Xiao, Han [1 ,2 ]
Li, Zhilin [3 ]
Jiang, Yu [1 ,3 ]
Yang, Yunliu [1 ]
Jiang, Weihong [1 ]
Gu, Yang [1 ]
Yang, Sheng [1 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Key Lab Synthet Biol, Shanghai 200032, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
[3] Shanghai Res & Dev Ctr Ind Biotechnol, Shanghai 201201, Peoples R China
基金
中国国家自然科学基金;
关键词
Clostridium beijerinckii; D-xylose utilization; xylR inactivation; xylT overexpression; Xylose mother liquid; EXPRESSION REPORTER SYSTEM; CATABOLITE REPRESSION; BACILLUS-SUBTILIS; BUTANOL PRODUCTION; ESCHERICHIA-COLI; GENE; ACETOBUTYLICUM; OPERON; PROMOTER; FERMENTATION;
D O I
10.1016/j.ymben.2012.05.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Clostridium beijerinckii is an attractive butanol-producing microbe for its advantage in co-fermenting hexose and pentose sugars. However, this Clostridium strain exhibits undesired efficiency in utilizing D-xylose, one of the major building blocks contained in lignocellulosic materials. Here, we reported a useful metabolic engineering strategy to improve D-xylose consumption by C beijerinckii. Gene cbei2385, encoding a putative D-xylose repressor XylR, was first disrupted in the C. beijerinckii NCIMB 8052, resulting in a significant increase in D-xylose consumption. A D-xylose proton-symporter (encoded by gene cbei0109) was identified and then overexpressed to further optimize D-xylose utilization, yielding an engineered strain 8052xylR-xylT(ptb) (xylR inactivation plus xylT overexpression driven by ptb promoter). We investigated the strain 8052xylR-xylT(ptb) in fermenting xylose mother liquid, an abundant by-product from industrial-scale xylose preparation from corncob and rich in D-xylose, finally achieving a 35% higher Acetone, Butanol and Ethanol (ABE) solvent titer (16.91 g/L) and a 38% higher yield (0.29 g/g) over those of the wild-type strain. The strategy used in this study enables C beijerinckii more suitable for butanol production from lignocellulosic materials. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:569 / 578
页数:10
相关论文
共 54 条
[1]   Tuning genetic control through promoter engineering [J].
Alper, H ;
Fischer, C ;
Nevoigt, E ;
Stephanopoulos, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (36) :12678-12683
[2]   Metabolic engineering applications to renewable resource utilization [J].
Aristidou, A ;
Penttilä, M .
CURRENT OPINION IN BIOTECHNOLOGY, 2000, 11 (02) :187-198
[3]   THE ACETONE-BUTANOL-ETHANOL FERMENTATION [J].
AWANG, GM ;
JONES, GA ;
INGLEDEW, WM .
CRC CRITICAL REVIEWS IN MICROBIOLOGY, 1988, 15 :S33-S67
[4]   EFFECT OF BUTANOL CHALLENGE AND TEMPERATURE ON LIPID-COMPOSITION AND MEMBRANE FLUIDITY OF BUTANOL-TOLERANT CLOSTRIDIUM-ACETOBUTYLICUM [J].
BAER, SH ;
BLASCHEK, HP ;
SMITH, TL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (12) :2854-2861
[5]   Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways [J].
Bond-Watts, Brooks B. ;
Bellerose, Robert J. ;
Chang, Michelle C. Y. .
NATURE CHEMICAL BIOLOGY, 2011, 7 (04) :222-227
[6]  
Cheng HR, 2011, MICROB CELL FACT, V10, DOI [10.1186/1475-2859-10-5, 10.1186/1475-2859-10-43]
[7]  
DAHL MK, 1995, FEMS MICROBIOL LETT, V132, P79, DOI 10.1016/0378-1097(95)00291-C
[8]   Design, construction and characterization of a set of insulated bacterial promoters [J].
Davis, Joseph H. ;
Rubin, Adam J. ;
Sauer, Robert T. .
NUCLEIC ACIDS RESEARCH, 2011, 39 (03) :1131-1141
[9]  
Duerre Peter, 2007, Biotechnology Journal, V2, P1525, DOI 10.1002/biot.200700168
[10]   Fermentative butanol production -: Bulk chemical and biofuel [J].
Duerre, Peter .
INCREDIBLE ANAEROBES: FROM PHYSIOLOGY TO GENOMICS TO FUELS, 2008, 1125 :353-362