Towards nonperturbative renormalizability of quantum Einstein gravity

被引:83
作者
Lauscher, O [1 ]
Reuter, M [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2002年 / 17卷 / 6-7期
关键词
D O I
10.1142/S0217751X02010418
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We summarize recent evidence supporting the conjecture that four-dimensional Quantum Einstein Gravity (QEG) is nonperturbatively renormalizable along the lines of Weinberg's asymptotic safety scenario. This would mean that QEG is mathematically consistent and predictive even at arbitrarily small length scales below the Planck length. For a truncated version of the exact flow equation of the effective average action we establish the existence of a non-Gaussian renormalization group fixed point which is suitable for the construction of a nonperturbative infinite cutoff-limit, The cosmological implications of this fixed point are discussed, and it is argued that QEG might solve the horizon and flatness problem of standard cosmology without an inflationary period.
引用
收藏
页码:993 / 1002
页数:10
相关论文
共 28 条
[1]  
BERGES J, HEPPH005122
[2]   Quantum gravity effects near the null black hole singularity [J].
Bonanno, A ;
Reuter, M .
PHYSICAL REVIEW D, 1999, 60 (08)
[3]   Renormalization group improved black hole spacetimes [J].
Bonanno, A ;
Reuter, M .
PHYSICAL REVIEW D, 2000, 62 (04) :21
[4]  
BONANNO A, IN PRESS PHYS REV D
[5]  
BONANNO A, ASTROPH0106468
[6]  
BONANNO A, GRQC9811026
[7]  
BONANNO A, HEPTH002196
[8]   INDUCED TWO-DIMENSIONAL QUANTUM-GRAVITY AND SL(2,R) KAC MOODY CURRENT-ALGEBRA [J].
CHAMSEDDINE, AH ;
REUTER, M .
NUCLEAR PHYSICS B, 1989, 317 (03) :757-771
[9]  
LAUSCHER O, IN PRESS PHYS REV D
[10]  
LAUSCHER O, HEPTH0110021