B-spline method and zonal grids for simulations of complex turbulent flows

被引:100
作者
Kravchenko, AG
Moin, P
Shariff, K
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词
zonal grids; turbulence simulations; Galerkin B-spline methods;
D O I
10.1006/jcph.1999.6217
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A numerical technique for computations of turbulent Bows is described. The technique is based on B-splines and allows grid embedding in physically significant Bow regions. Numerical tests, which include solutions of nonlinear advection-diffusion equations and computations of flow over a circular cylinder at Reynolds numbers up to 300, indicate that the method is accurate and efficient. In computations of flow over a cylinder, the lift, drag, and base suction coefficients agree well with existing experimental data and previous numerical simulations. (C) 1999 Academic Press.
引用
收藏
页码:757 / 789
页数:33
相关论文
共 37 条
[1]  
[Anonymous], [No title captured]
[2]   Local grid refinement in Large-Eddy Simulations [J].
Boersma, BJ ;
Kooper, MN ;
Nieuwstadt, FTM ;
Wesseling, P .
JOURNAL OF ENGINEERING MATHEMATICS, 1997, 32 (2-3) :161-175
[3]  
CABOT W, 1995, CTR ANN RES BRIEFS, P41
[4]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[5]   A NUMERICAL STUDY OF 3 DIMENSIONAL TURBULENT CHANNEL FLOW AT LARGE REYNOLDS NUMBERS [J].
DEARDORFF, JW .
JOURNAL OF FLUID MECHANICS, 1970, 41 :453-+
[6]   An analysis of numerical errors in large-eddy simulations of turbulence [J].
Ghosal, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (01) :187-206
[7]   NUMERICAL CALCULATION OF TIME-DEPENDENT VISCOUS INCOMPRESSIBLE FLOW OF FLUID WITH FREE SURFACE [J].
HARLOW, FH ;
WELCH, JE .
PHYSICS OF FLUIDS, 1965, 8 (12) :2182-&
[8]   DETAILS OF THE DRAG CURVE NEAR THE ONSET OF VORTEX SHEDDING [J].
HENDERSON, RD .
PHYSICS OF FLUIDS, 1995, 7 (09) :2102-2104
[9]   NUMERICAL TREATMENT OF GRID INTERFACES FOR VISCOUS FLOWS [J].
KALLINDERIS, Y .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 98 (01) :129-144
[10]   APPLICATION OF A FRACTIONAL-STEP METHOD TO INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
KIM, J ;
MOIN, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (02) :308-323