Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression

被引:25
作者
Bale, Jacob B. [1 ,2 ]
Park, Rachel U. [1 ]
Liu, Yuxi [3 ]
Gonen, Shane [1 ,4 ]
Gonen, Tamir [4 ]
Cascio, Duilio [5 ]
King, Neil P. [1 ,6 ]
Yeates, Todd O. [3 ,5 ]
Baker, David [1 ,6 ,7 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Grad Program Mol & Cellular Biol, Seattle, WA 98195 USA
[3] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[4] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA 20147 USA
[5] Univ Calif Los Angeles, DOE, Inst Genom & Prote, Los Angeles, CA 90095 USA
[6] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA
[7] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
computational protein design; crystal structure; solubility; coassembly; symmetry; tetrahedral; nanomaterial; COMPUTATIONAL DESIGN; REFINEMENT; LIKELIHOOD; CAGE;
D O I
10.1002/pro.2748
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We recently reported the development of a computational method for the design of coassembling multicomponent protein nanomaterials. While four such materials were validated at high-resolution by X-ray crystallography, low yield of soluble protein prevented X-ray structure determination of a fifth designed material, T33-09. Here we report the design and crystal structure of T33-31, a variant of T33-09 with improved soluble yield resulting from redesign efforts focused on mutating solvent-exposed side chains to charged amino acids. The structure is found to match the computational design model with atomic-level accuracy, providing further validation of the design approach and demonstrating a simple and potentially general means of improving the yield of designed protein nanomaterials.
引用
收藏
页码:1695 / 1701
页数:7
相关论文
共 42 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]  
[Anonymous], 2012, PYMOL MOL GRAPH SYST
[3]  
[Anonymous], CURR PROTOC PROTEIN
[4]   In vivo continuous directed evolution [J].
Badran, Ahmed H. ;
Liu, David R. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2015, 24 :1-10
[5]   Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT [J].
Blanc, E ;
Roversi, P ;
Vonrhein, C ;
Flensburg, C ;
Lea, SM ;
Bricogne, G .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2210-2221
[6]   Squaring the Circle in Peptide Assembly: From Fibers to Discrete Nanostructures by de Novo Design [J].
Boyle, Aimee L. ;
Bromley, Elizabeth H. C. ;
Bartlett, Gail J. ;
Sessions, Richard B. ;
Sharp, Thomas H. ;
Williams, Claire L. ;
Curmi, Paul M. G. ;
Forde, Nancy R. ;
Linke, Heiner ;
Woolfson, Derek N. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (37) :15457-15467
[7]   Bayesian statistical viewpoint on structure determination: Basic concepts and examples [J].
Bricogne, G .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :361-423
[8]   DIRECT PHASE DETERMINATION BY ENTROPY MAXIMIZATION AND LIKELIHOOD RANKING - STATUS-REPORT AND PERSPECTIVES [J].
BRICOGNE, G .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1993, 49 :37-60
[9]  
Brodin JD, 2012, NAT CHEM, V4, P375, DOI [10.1038/nchem.1290, 10.1038/NCHEM.1290]
[10]   Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently [J].
Currin, Andrew ;
Swainston, Neil ;
Day, Philip J. ;
Kell, Douglas B. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (05) :1172-1239