Rapid and opposite effects of BDNF and NGF on the functional organization of the adult cortex in vivo

被引:95
作者
Prakash, N
CohenCory, S
Frostig, RD
机构
[1] UNIV CALIF IRVINE, DEPT PSYCHOBIOL, IRVINE, CA 92717 USA
[2] UNIV CALIF IRVINE, CTR LEARNING & MEMORY, IRVINE, CA 92717 USA
[3] CALTECH, DIV BIOL, PASADENA, CA 91125 USA
关键词
D O I
10.1038/381702a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
THE adult cortex is thought to undergo plastic changes that are closely dependent on neuronal activity (reviewed in ref. 1), although it is not yet known what molecules are involved. Neurotrophins and their receptors have been implicated in several aspects of developmental plasticity(2-4), and their expression in the adult cortex suggests additional roles in adult plasticity(5-9). To examine these potential roles in viva, we used intrinsic-signal optical imaging to quantify the effects of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) on the functional representation of a stimulated whisker in the 'barrel' subdivision of the rat somatosensory cortex. Topical application of BDNF resulted in a rapid and long-lasting decrease in the size of a whisker representation, and a decrease in the amplitude of the activity-dependent intrinsic signal, In contrast, NGF application resulted in a rapid but transient increase in the size of a representation, and an increase in the amplitude of the activity-dependent intrinsic signal. These results demonstrate that neurotrophins can rapidly modulate stimulus-dependent activity in adult cortex, and suggest a role for neurotrophins in regulating adult cortical plasticity.
引用
收藏
页码:702 / 706
页数:5
相关论文
共 30 条