Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores

被引:168
作者
Dimkpa, Christian O. [1 ]
Merten, Dirk [2 ]
Svatos, Ales [3 ]
Buechel, Georg [2 ]
Kothe, Erika [1 ]
机构
[1] Univ Jena, Inst Microbiol, D-07743 Jena, Germany
[2] Univ Jena, Inst Earth Sci, D-07749 Jena, Germany
[3] Max Planck Inst Chem Ecol, Mass Spectrometry Res Grp, D-07745 Jena, Germany
关键词
Auxins; Heavy metals; Oxidative stress; Microbial siderophores; Plant growth; Toxicity; LIPID-PEROXIDATION; IRON; ALUMINUM; MECHANISMS; TOXICITY; DESFERRIOXAMINE; RESISTANCE; NICKEL; L; PHYTOREMEDIATION;
D O I
10.1016/j.soilbio.2008.10.010
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
High levels of metals impede plant growth by affecting physiological processes. Siderophores are microbial Fe-chelators that, however, bind other metals. This study evaluated plant growth in a soil containing elevated levels of metals, including Al, Cu, Fe, Mn, Ni, and U, using Streptomyces-derived cell-free supernatant containing siderophores and auxins. Cowpea plants in the soil were treated with the culture filtrate. Growth was measured and biochemical analyses such as chlorophyll contents, RNA and protein quantification, lipid membrane peroxidation, and anti-oxidative responses were conducted to evaluate oxidative stress in the plants. Liquid chromatography-mass spectrometry was used to simulate competition for siderophore binding, and metal content of plants was determined spectroscopically. Whereas the metals inhibited plant growth, addition of siderophores improved growth. There was evidence of lipid peroxidation, an enhanced superoxide dismutase activity, and lowered chlorophyll, RNA, protein, carotenoid and residual indole acetic acid contents, especially in control plants. Siderophore competition assays between Al and Fe, and Fe and Cu suggested that trivalent metals are more competitive for siderophore binding than divalent ones. Compared to control plants, higher amounts of metals were obtained in siderophore-treated plants. Siderophores were able to supply plants with Fe in the presence of levels of metals, mainly Al, Cu, Mn, Ni and U that otherwise inhibit Fe acquisition. This led to enhanced chlorophyll content, circumventing lipid peroxidation effects on leaves. Siderophores lowered the formation of free radicals, thereby protecting microbial auxins from degradation and enabling them to enhance plant growth which in turn resulted in augmented metal uptake. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:154 / 162
页数:9
相关论文
共 59 条
[1]   USE OF CHROME AZUROL-S REAGENTS TO EVALUATE SIDEROPHORE PRODUCTION BY RHIZOSPHERE BACTERIA [J].
ALEXANDER, DB ;
ZUBERER, DA .
BIOLOGY AND FERTILITY OF SOILS, 1991, 12 (01) :39-45
[2]   PHARMACOKINETICS OF DESFERRIOXAMINE AND OF ITS IRON AND ALUMINUM CHELATES IN PATIENTS ON HEMODIALYSIS [J].
ALLAIN, P ;
CHALEIL, D ;
MAURAS, Y ;
BEAUDEAU, G ;
VARIN, MC ;
POIGNET, JL ;
CIANCIONI, C ;
ANG, KS ;
CAM, G ;
SIMON, P .
CLINICA CHIMICA ACTA, 1987, 170 (2-3) :331-338
[3]  
Amoroso MJ, 2000, J BASIC MICROB, V40, P295, DOI 10.1002/1521-4028(200012)40:5/6<295::AID-JOBM295>3.0.CO
[4]  
2-Z
[5]   SIDEROPHORES OF PSEUDOMONAS-PUTIDA AS AN IRON SOURCE FOR DICOT AND MONOCOT PLANTS [J].
BARNESS, E ;
CHEN, Y ;
HADAR, Y ;
MARSCHNER, H ;
ROMHELD, V .
PLANT AND SOIL, 1991, 130 (1-2) :231-241
[6]   Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection [J].
Becana, M ;
Moran, JF ;
Iturbe-Ormaetxe, I .
PLANT AND SOIL, 1998, 201 (01) :137-147
[7]   Aluminum-induced oxidative stress in maize [J].
Boscolo, PRS ;
Menossi, M ;
Jorge, RA .
PHYTOCHEMISTRY, 2003, 62 (02) :181-189
[8]   Chemical aspects of siderophore mediated iron transport [J].
Boukhalfa, H ;
Crumbliss, AL .
BIOMETALS, 2002, 15 (04) :325-339
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]  
BROWN DJ, 1982, LANCET, V2, P343