Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update

被引:159
作者
Astier, Jeremy [1 ]
Lindermayr, Christian [1 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Biochem Plant Pathol, D-85764 Neuherberg, Germany
关键词
metal nitrosylation; S-nitrosylation; tyrosine nitration; nitric oxide; posttranslational modification; plants; S-NITROSYLATED PROTEINS; ARABIDOPSIS-THALIANA; TYROSINE NITRATION; CELL-DEATH; ALTERNATIVE OXIDASE; NITROSATIVE STRESS; GENE-EXPRESSION; TOBACCO; INHIBITION; NO;
D O I
10.3390/ijms131115193
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitric oxide (NO) has been demonstrated as an essential regulator of several physiological processes in plants. The understanding of the molecular mechanism underlying its critical role constitutes a major field of research. NO can exert its biological function through different ways, such as the modulation of gene expression, the mobilization of second messengers, or interplays with protein kinases. Besides this signaling events, NO can be responsible of the posttranslational modifications (PTM) of target proteins. Several modifications have been identified so far, whereas metal nitrosylation, the tyrosine nitration and the S-nitrosylation can be considered as the main ones. Recent data demonstrate that these PTM are involved in the control of a wide range of physiological processes in plants, such as the plant immune system. However, a great deal of effort is still necessary to pinpoint the role of each PTM in plant physiology. Taken together, these new advances in proteomic research provide a better comprehension of the role of NO in plant signaling.
引用
收藏
页码:15193 / 15208
页数:16
相关论文
共 110 条
[1]   S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata -: ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition [J].
Abat, Jasmeet K. ;
Mattoo, Autar K. ;
Deswal, Renu .
FEBS JOURNAL, 2008, 275 (11) :2862-2872
[2]   Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: Change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity [J].
Abat, Jasmeet Kaur ;
Deswal, Renu .
PROTEOMICS, 2009, 9 (18) :4368-4380
[3]   Protein Tyrosine Nitration: Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins [J].
Abello, Nicolas ;
Kerstjens, Huib A. M. ;
Postma, Dirkje S. ;
Bischoff, Rainer .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (07) :3222-3238
[4]   cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO [J].
Ahern, GP ;
Klyachko, VA ;
Jackson, MB .
TRENDS IN NEUROSCIENCES, 2002, 25 (10) :510-517
[5]   Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana [J].
Ahlfors, Reetta ;
Brosche, Mikael ;
Kollist, Hannes ;
Kangasjarvi, Jaakko .
PLANT JOURNAL, 2009, 58 (01) :1-12
[6]   Inhibition of Arabidopsis O-Acetylserine(thiol)lyase A1 by Tyrosine Nitration [J].
Alvarez, Consolacion ;
Lozano-Juste, Jorge ;
Romero, Luis C. ;
Garcia, Irene ;
Gotor, Cecilia ;
Leon, Jose .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (01) :578-586
[7]   Nitric oxide inhibits the ATPase activity of the chaperone-like AAA plus ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco cells [J].
Astier, Jeremy ;
Besson-Bard, Angelique ;
Lamotte, Olivier ;
Bertoldo, Jean ;
Bourque, Stephane ;
Terenzi, Hernan ;
Wendehenne, David .
BIOCHEMICAL JOURNAL, 2012, 447 :249-260
[8]   Protein S-nitrosylation: What's going on in plants? [J].
Astier, Jeremy ;
Kulik, Anna ;
Koen, Emmanuel ;
Besson-Bard, Angelique ;
Bourque, Stephane ;
Jeandroz, Sylvain ;
Lamotte, Olivier ;
Wendehenne, David .
FREE RADICAL BIOLOGY AND MEDICINE, 2012, 53 (05) :1101-1110
[9]   S-nitrosylation: An emerging post-translational protein modification in plants [J].
Astier, Jeremy ;
Rasul, Sumaira ;
Koen, Emmanuel ;
Manzoor, Hamid ;
Besson-Bard, Angelique ;
Lamotte, Olivier ;
Jeandroz, Sylvain ;
Durner, Joerg ;
Lindermayr, Christian ;
Wendehenne, David .
PLANT SCIENCE, 2011, 181 (05) :527-533
[10]   Suppression of the ER-localized AAA ATPase NgCDC48 inhibits tobacco growth and development [J].
Bae, Hansol ;
Choi, Soo Min ;
Yang, Seong Wook ;
Pai, Hyun-Sook ;
Kim, Woo Taek .
MOLECULES AND CELLS, 2009, 28 (01) :57-65