Ideal strengths of bcc metals

被引:112
作者
Krenn, CR [1 ]
Roundy, D
Morris, JW
Cohen, ML
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2001年 / 319卷
基金
美国国家科学基金会;
关键词
ideal strength; bcc ductile-brittle transition; pencil-glide;
D O I
10.1016/S0921-5093(01)00998-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present ab initio ideal strength calculations in body-centered cubic (bcc) tungsten for 'pencil-glide' slip on {110}, {112}, and {123} planes and for the {100} cleavage strength. We use these results to analyze the tensile and shear strengths of other bcc metals. In all bee metals, the minimum shear strength on any plane containing <111> is approximate to0.11/S-<111>, where S-<111> is the elastic compliance for any shear in a <111> direction. The ideal cleavage strength on {100} for many bee metals is approximate to0.083/s(11) where s(11) is the single crystal elastic compliance. Comparison of the ideal shear and tensile strengths offers a measure of the inherent ductility or brittleness of a material. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:111 / 114
页数:4
相关论文
共 20 条
[1]   Strained tetragonal states and Bain paths in metals [J].
Alippi, P ;
Marcus, PM ;
Scheffler, M .
PHYSICAL REVIEW LETTERS, 1997, 78 (20) :3892-3895
[2]   Non-linear deformation mechanisms during nanoindentation [J].
Bahr, DF ;
Kramer, DE ;
Gerberich, WW .
ACTA MATERIALIA, 1998, 46 (10) :3605-3617
[3]   PSEUDOPOTENTIALS AND TOTAL ENERGY CALCULATIONS [J].
COHEN, ML .
PHYSICA SCRIPTA, 1982, T1 :5-10
[4]   LOCAL STABILITY OF NONEQUILIBRIUM PHASES [J].
CRAIEVICH, PJ ;
WEINERT, M ;
SANCHEZ, JM ;
WATSON, RE .
PHYSICAL REVIEW LETTERS, 1994, 72 (19) :3076-3079
[5]   The theory of the elastic limit and the solidity of crystal bodies [J].
Frenkel, J .
ZEITSCHRIFT FUR PHYSIK, 1926, 37 (7/8) :572-609
[6]   MOMENTUM-SPACE FORMALISM FOR THE TOTAL ENERGY OF SOLIDS [J].
IHM, J ;
ZUNGER, A ;
COHEN, ML .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (21) :4409-4422
[7]  
Kelly A., 1986, STRONG SOLIDS
[8]   Theoretical study of the response of 12 cubic metals to uniaxial loading [J].
Milstein, F ;
Chantasiriwan, S .
PHYSICAL REVIEW B, 1998, 58 (10) :6006-6018
[9]   The internal stability of an elastic solid [J].
Morris, JW ;
Krenn, CR .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 2000, 80 (12) :2827-2840
[10]  
Morris JW, 2000, PHASE TRANSFORMATIONS AND EVOLUTION IN MATERIALS, P187