Iterative Monte Carlo for quantum dynamics

被引:26
作者
Jadhao, Vikram [1 ]
Makri, Nancy [1 ,2 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.3000393
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a fully quantum mechanical methodology for calculating complex-time correlation functions by evaluating the discretized path integral expression iteratively on a grid selected by a Monte Carlo procedure. Both the grid points and the summations performed in each iteration utilize importance sampling, leading to favorable scaling with the number of particles, while the stepwise evaluation of the integrals circumvents the exponential growth of statistical error with time. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000393]
引用
收藏
页数:4
相关论文
共 9 条
[1]   EQUILIBRIUM AND DYNAMICAL FOURIER PATH INTEGRAL METHODS [J].
Doll, J. D. ;
Freeman, David L. ;
Beck, Thomas L. .
ADVANCES IN CHEMICAL PHYSICS <D>, 1990, 78 :61-127
[2]  
Feynman R. P., 1965, QUANTUM MECH PATH IN
[3]  
Mak CH, 1996, ADV CHEM PHYS, V93, P39, DOI 10.1002/9780470141526.ch2
[4]   Time-dependent quantum methods for large systems [J].
Makri, N .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1999, 50 :167-191
[5]   ON SMOOTH FEYNMAN PROPAGATORS FOR REAL-TIME PATH-INTEGRALS [J].
MAKRI, N .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (10) :2417-2424
[6]   FEYNMAN PATH INTEGRATION IN QUANTUM DYNAMICS [J].
MAKRI, N .
COMPUTER PHYSICS COMMUNICATIONS, 1991, 63 (1-3) :389-414
[7]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[8]   AN ITERATIVE SCHEME FOR THE EVALUATION OF DISCRETIZED PATH-INTEGRALS [J].
THIRUMALAI, D ;
BRUSKIN, EJ ;
BERNE, BJ .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (10) :5063-5069
[9]  
Trotter H.F., 1959, P AM MATH SOC, V10, P545, DOI [10.1090/proc/1959-010-04, DOI 10.1090/S0002-9939-1959-0108732-6]