Hybridization and speciation

被引:1612
作者
Abbott, R. [1 ]
Albach, D. [2 ]
Ansell, S. [3 ]
Arntzen, J. W. [4 ]
Baird, S. J. E. [5 ]
Bierne, N. [6 ]
Boughman, Janette W. [7 ]
Brelsford, A. [8 ]
Buerkle, C. A. [9 ]
Buggs, R. [10 ]
Butlin, R. K. [11 ]
Dieckmann, U. [12 ]
Eroukhmanoff, F. [13 ]
Grill, A. [14 ]
Cahan, S. H. [15 ]
Hermansen, J. S. [13 ]
Hewitt, G. [16 ]
Hudson, A. G. [17 ]
Jiggins, C. [18 ]
Jones, J. [19 ]
Keller, B. [20 ]
Marczewski, T. [21 ]
Mallet, J. [22 ,23 ]
Martinez-Rodriguez, P. [24 ]
Moest, M. [25 ]
Mullen, S. [26 ]
Nichols, R. [10 ]
Nolte, A. W. [27 ]
Parisod, C. [28 ]
Pfennig, K. [29 ]
Rice, A. M. [30 ]
Ritchie, M. G. [1 ]
Seifert, B. [31 ]
Smadja, C. M. [32 ]
Stelkens, R. [33 ]
Szymura, J. M. [34 ]
Vainola, R. [35 ]
Wolf, J. B. W. [36 ]
Zinner, D. [37 ]
机构
[1] Univ St Andrews, Sch Biol, St Andrews, Fife, Scotland
[2] Carl von Ossietzky Univ Oldenburg, Inst Biol & Environm Sci, D-26111 Oldenburg, Germany
[3] Nat Hist Museum, London SW7 5BD, England
[4] Netherlands Ctr Biodivers Nat, Leiden, Netherlands
[5] CIBIO, Vairao, Portugal
[6] CNRS, Inst Sci Evolut, Montpellier 5, France
[7] Michigan State Univ, BEACON Ctr Study Evolut Act, E Lansing, MI 48824 USA
[8] Univ Lausanne, Dept Ecol & Evolut, Lausanne, Switzerland
[9] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA
[10] Queen Mary Univ London, Sch Biol & Chem Sci, London, England
[11] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England
[12] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria
[13] Univ Oslo, Dept Biol, CEES, Oslo, Norway
[14] Univ Vienna, Dept Trop Ecol & Anim Biodivers, Vienna, Austria
[15] Univ Vermont, Dept Biol, Burlington, VT USA
[16] Univ E Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England
[17] Museo Nacl Ciencias Nat CSIC, Dept Biodivers & Evolutionary Biol, Madrid, Spain
[18] Univ Cambridge, Dept Zool, Cambridge, England
[19] Univ Konstanz, Dept Biol, Constance, Germany
[20] Univ Zurich, Inst Systemat Bot, Zurich, Switzerland
[21] Royal Bot Garden Edinburgh, Edinburgh, Midlothian, Scotland
[22] UCL, London, England
[23] Harvard Univ, Cambridge, MA 02138 USA
[24] Univ Autonoma Madrid, Dept Biol Genet, Madrid, Spain
[25] EAWAG, Dubendorf, Switzerland
[26] Boston Univ, Dept Biol, Boston, MA 02215 USA
[27] Max Planck Inst Evolutionary Biol, Plon, Germany
[28] Univ Neuchatel, Inst Biol, Lab Evolutionary Bot, CH-2000 Neuchatel, Switzerland
[29] Univ N Carolina, Dept Biol, Chapel Hill, NC USA
[30] Lehigh Univ, Dept Biol Sci, Bethlehem, PA 18015 USA
[31] Senckenberg Museum Nat Hist Goerlitz, Goerlitz, Germany
[32] Univ Montpellier 2, CNRS Inst Sci Evolut, Montpellier, France
[33] Univ Liverpool, Inst Integrat Biol, Liverpool L69 3BX, Merseyside, England
[34] Jagiellonian Univ, Inst Zool, PL-30060 Krakow, Poland
[35] Univ Helsinki, Finnish Museum Nat Hist, Helsinki, Finland
[36] Uppsala Univ, Evolutionary Biol Ctr, Dept Evolutionary Biol, Uppsala, Sweden
[37] German Primate Ctr, Cognit Ethol Lab, Gottingen, Germany
基金
美国国家科学基金会; 英国生物技术与生命科学研究理事会; 奥地利科学基金会;
关键词
hybrid species; hybrid zone; incompatibility; introgression; reinforcement; reproductive barrier; HOMOPLOID HYBRID SPECIATION; REPRODUCTIVE CHARACTER DISPLACEMENT; ADAPTIVE POPULATION DIVERGENCE; ADJACENT PLANT-POPULATIONS; GENE-EXPRESSION DIVERGENCE; NATURAL-SELECTION; SEXUAL SELECTION; LOCAL ADAPTATION; INCIPIENT SPECIATION; TRAGOPOGON-MISCELLUS;
D O I
10.1111/j.1420-9101.2012.02599.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near-instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the DobzhanskyMuller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock-on effects on speciation both within and outside regions of hybridization.
引用
收藏
页码:229 / 246
页数:18
相关论文
共 211 条
  • [1] Homoploid hybrid speciation in action
    Abbott, Richard J.
    Hegarty, Matthew J.
    Hiscock, Simon J.
    Brennan, Adrian C.
    [J]. TAXON, 2010, 59 (05) : 1375 - 1386
  • [2] Origins, establishment and evolution of new polyploid species:: Senecio cambrensis and S-eboracensis in the British Isles
    Abbott, RJ
    Lowe, AJ
    [J]. BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, 2004, 82 (04) : 467 - 474
  • [3] Plant introductions, hybridization and gene flow
    Abbott, RJ
    James, JK
    Milne, RI
    Gillies, ACM
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2003, 358 (1434) : 1123 - 1132
  • [4] Focus on polyploidy
    Ainouche, Malika L.
    Jenczewski, Eric
    [J]. NEW PHYTOLOGIST, 2010, 186 (01) : 1 - 4
  • [5] The genetics of adaptive shape shift in stickleback: Pleiotropy and effect size
    Albert, Arianne Y. K.
    Sawaya, Sterling
    Vines, Timothy H.
    Knecht, Anne K.
    Miller, Craig T.
    Summers, Brian R.
    Balabhadra, Sarita
    Kingsley, David M.
    Schluter, Dolph
    [J]. EVOLUTION, 2008, 62 (01) : 76 - 85
  • [6] HYBRIDIZATION AS AN EVOLUTIONARY STIMULUS
    ANDERSON, E
    STEBBINS, GL
    [J]. EVOLUTION, 1954, 8 (04) : 378 - 388
  • [7] Anderson E., 1949, Introgressive hybridization.
  • [8] Determinants of Divergent Adaptation and Dobzhansky-Muller Interaction in Experimental Yeast Populations
    Anderson, James B.
    Funt, Jason
    Thompson, Dawn Anne
    Prabhu, Snehit
    Socha, Amanda
    Sirjusingh, Caroline
    Dettman, Jeremy R.
    Parreiras, Lucas
    Guttman, David S.
    Regev, Aviv
    Kohn, Linda M.
    [J]. CURRENT BIOLOGY, 2010, 20 (15) : 1383 - 1388
  • [9] Evolution in closely adjacent plant populations X: long-term persistence of prereproductive isolation at a mine boundary
    Antonovics, J.
    [J]. HEREDITY, 2006, 97 (01) : 33 - 37
  • [10] Fine-scale genetic mapping of a hybrid sterility factor between Drosophila simulans and D. mauritiana: the varied and elusive functions of "speciation genes"
    Araripe, Luciana O.
    Montenegro, Horacio
    Lemos, Bernardo
    Hartl, Daniel L.
    [J]. BMC EVOLUTIONARY BIOLOGY, 2010, 10